Gold catalytic Growth of Germanium Nanowires by chemical vapour deposition method

Document Type : Research Paper

Authors

Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317–51167, Iran

10.7508/jns.2013.01.012

Abstract

Germanium nanowires (GeNWs) were synthesized using chemical vapor deposition (CVD) based on vapor–liquid–solid (VLS) mechanism with Au nanoparticles as catalyst and germanium tetrachloride (GeCl4) as a precursor of germanium. Au catalysts were deposited on silicon wafer as a thin film, firstly by sputtering technique and secondly by submerging the silicon substrates in Au colloidal solution, which resulted in Au nanoparticles with different sizes. GeNWs were synthesized at 400 °C, which is a low temperature for electrical device fabrication. Effect of different parameters such as Au nanoparticles size, carrier gas (Ar) flow and mixture of H2 with the carrier gas on GeNWs diameter and shape was studied by SEM images. The chemical composition of the nanostructure was also examined by energy dispersive X-ray spectroscopy (EDS).

Keywords


[1] Y. Chaoyi, Y.Ch. Mei, Zh. Tao, S.L. Pooi, J. Phys. Chem. C. 113 (2009) 1705–1708.
[2] Y. Cui, C. M. Lieber, Science. 291 (2001) 851-853.
[3] M.S. Hu, H.L. Chen, C.H. Shen, L.S. Hong, B.R. Huang, K.H. Chen, L.C. Chen, Nat. Mater. 5 (2006) 102-106.
[4] B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Nature. 449 (2007) 885-889.
[5] D. Wang, Pure Appl. Chem. 79 (2007) 55–65.
[6] H. Dai. Surf. Sci. 500 (2002) 218-241.
[7] H.J. Dai. Acc. Chem. Res. 35 (2002) 1035-1044.
[8] C.M. Lieber. Mrs Bull. 28 (2003) 486-491.
[9] Y.N. Xia, P.D. Yang. Adv. Mater. 15 (2003) 351-352.
[10] P.D. Yang. Mrs Bull. 30 (2005) 85-91.
[11] J.H. Kim, S.R. Moon, Y. Kim, Z.G. Chen, J. Zou, D.Y. Choi, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Nanotechnology, 23 (2013) 115603.1-115603.6.
[12] S.M. Sze. Physics of Semiconductor Devices, John Wiley, New York, 1981.
[13] K.C. Saraswat, C.O. Chui, T. Krishnamohan, A. Nayfeh, P. Mcintyre. Microelectron. Eng. 80 (2005) 15-21.
[14] M.A. Sk, M.F. Ng, L. Huang, K.H. Lim, Phys. Chem. Chem. Phys. 15 (2013) 5927-5935.
[15] J.R. Heath, F.K. Legoues. Chem. Phys. Lett. 208 (1993) 263-268.
[16] A.R. Phani, V. Grossi, M. Passacantando, L. Ottaviano, S. Santucci, NSTI Nanotech. 3 (2006)141-144.
[17] Y. Wu, P. Yang, Chem. Mater. 12 (2000) 605-607.
[18] G. Gu, M. Burghard, G.T. Kim, S. Dusberg, P.W. Chiu, V. Krstic, S. Roth, W.Q. Han, J. Appl. Phys. 90 (2001) 5747-5751.
[19] T.I. Kamins, X. Li, R.S. Williams, Nano.Lett. 4 (2004) 503-506.
[20] R. Rakesh Kumar, K. Narasimha Rao, A.R. Phani, AIP Conf. Proc. 1512 (2012) 266-267.
[21] T. Harnath, B.K. Korgel, J. Am. Cerm. Soc. 124 (2001) 14241429.
[22] D.C. Johnson1, W.D. Morris, A.L. Prieto. Nanotechnology 21 (2010) 1-9.
[23] R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4 (1964) 89–90.
[24] M. Zahedifar, F. Hosseinmardi, L. Eshraghi, B. Ganjipour, Radiat. Phys. Chem. 80 (2011) 324–327.
[25] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Matter. 12 (2003) 353-389.
[26] T. Hanrath, B.A. Korgel. J. Am. Chem. Soc. 124 (2002) 1424-1429.
[27] T. Hanrath, B.A. Korgel. Nano Lett. 4 (2004) 1455-1461.
[28] T. Hanrath, B.A. Korgel. J. Phys. Chem. B. 109 (2005) 5518-5524.
[29] T. Hanrath, B.A. Korgel. Small. 1 (2005) 717-721.