Dependence of Photocatalytic Activity of TiO2-SiO2 Nanopowders

Document Type : Research Paper


Department of Engineering, Tonekabon branch, Islamic Azad University, Tonekabon, Iran.



Structural properties and chemical composition change the photocatalytic activity in TiO2-SiO2 nanopowder composite. The SiO2-TiO2 nanostructure is synthesized based on sol–gel method. The nanoparticles are characterized by x-ray fluorescents (XRF), x- ray diffraction (XRD), tunneling electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), UV-vis. Spectrophotometer and furrier transmission create infrared absorption (FTIR) techniques. The rate constant k for the degradation of methylen blue in its aqueous solution under UV irradiation is determined as a measure of photocatalytic activity. Dependence between photocatalytic activity and SiO2 content in the composite is determined. Rate constant k is found dependent on the content of SiO2 in the composite that calcined at 900 oC. The addition of low composition SiO2 to the TiO2 matrix (lower than 45%) enhances the photocatalytic activity due to thermal stability and increasing in the surface area. The effects of chemical compositions on the surface topography and the crystallization of phases are studied.


[1] K. Thamaphat, P. Limsuwan, B. Ngotawornchai, J. Nat. Sci. 42 (2008) 357 - 361.
[2] S. Bakardjieva, V. Stengl,  L. Szatmary,  J. Subrt,  J. Lukac,  N. Murafa,  D. Niznansky,  K. Cizek,  J. Jirkovsky, N. Petrova, J. Mater. Chem. 12 (2006)  
[3] Y. B. Khollam, S. B. Deshpande, V. Samuel and        H. S. Potdar, Indian J. Engin. Mater. Sci. 15 (2008)  51-54.
[4] H. Pan, X. D. Wang, S. S. Xiao, L. G. Yu, Z. J. Zhang, Indian J. Engin. Mater. Sci. (2013) 20  561-567.
[5] M. Riazian, J. Nanostructres  3 (2013) 25-32.
[6] M. Riazian, A. Bahari, Paraman  J. Phys. 78 (2012) 319–331.
[7] K Kato, A. Tsuzuki, H. Taoda, Y. Torii, T. Kato, Y. Butsugan, J. Mater. Sci. 29 (1994) 5911–5915.
[8] Y. Abe, N. Sugimoto, Y. Nagao, T. Misono, J. Non-Cryst. Solids 104 (1988) 164–169.
[9] H.Zhang, J. F. Banfdield, J. Phys. Chem. B. 104 (2000) 3481-3487.
[10] O. Carp, C. L. Huisman, A. Reller, Prog. Solid State Chem. 32 (2004) 177-178.
[11] M. Inagaki, R. Nonaka , B. Tryba, A. W  Morawski, Chemosphere, 64 (2006) 437-445.
[12]  J. Qiu, F. Zhuge, X. Li, X. Gao, X. Gan, L. Li, J. Mater. Chem. 22 (2012) 3549-3554.
[13] S. Sarmah, A. Kumar, Indian J. Phys. 85 (2011)713-726.
[14]   S. Karan, D. D. Majumder, A Goswami, Indian J. Phys. 86 (2012) 667-762.       
[15] Y. Chen, L. Lou, J. Photochem. Photobiol. A: Chemistry, 163(2004) 281-287.
[16] C.  Xie, Z. Xu, Q. Yang Q, B. Xue, Y. Du, J. Zhang, Mater. Sci. Eng. B. 112 (2004) 34-41.
[17] K. Y. Jung, S. B. Park, S. Ihm, Appl. Catal. B: Environmental  51 (2004)  239-245.
[18] H. F. Yu, S. M. Wang, J. Non-Cryst. Solids 261 (2000) 260-267.
[19] Z. Yongxiang, X. Linping, W. Yongzhao,  G. Chunguang, L. Diansheng Catalysis Today 93 (2004) 583–588.
[20] A. A. Gribb, J. F.Banfield, Am. Mineral 82 (1997) 717–28.