Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

Document Type : Research Paper


1 Faculty of Engineering, Islamic Azad university, Roudehen Branch.

2 Electrical and Computer Engineering Department, University of Tehran



In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithography (LIL) fabricated different reproducible pillars, holes and rhomboidal structures. As a result, Submicron patterning of porous areas and nanohole arrays on Si substrate with a minimum feature size of 600nm was achieved. Measured reflection spectra of the samples present different optical characteristics which is dependent on the shape, thickness of metal catalyst and periodicity of the structure. These structures can be designed to reach a photonic bandgap in special range or antireflection layer in energy harvesting applications. The resulted reflection spectra of applied method are comparable to conventional expensive and complicated dry etching techniques.


[1] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, Opt. Express 14 (2006) 12401-12408
[2] M. Balucani, V. Bondarenko, N. Vorozov and A. Ferrari, Physica E: Low-dimensional Systems and Nanostructures16 (2003) 586-590
[3] F. Raissi, R. Farivar, Applied Physics Letters 8 (2005)7164101-164101
[4] G. M. O'Halloran, M. Kuhl, P. J. Trimp, P. French, Sensors and Actuators A: Physical 61 (1997) 415-420
[5] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, J. Rand, Appl. Phys. Lett. 91 (2007) 233117
[6] C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, Nat. Nanotechnol.3 (2008) 31–35
[7] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett.3 (2003) 149
[8] J. Hu, M. Ouyang, P. Yang, C. M. Lieber, Nature 3 (1999) 9948
[9] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. Yu,W. A. Goddard,J. Heath, Nature 451 (2008) 168
[10] C. M. McAlpine, R. Friedman, S. Jin, K. Lin, W. U. Wang, C. M. Lieber, Nano Lett. 3 (2008) 1531
[11] Y. Huang, X. Duan, C. LieberSmall1 (2005) 142
[12] B. Tian, P. Xie, T. J. Kempa, D. C. Bell, C. M. Lieber, Nat. Nanotechnol.4 (2009) 824
[13] K. Byun, K. Heo, S. Shim, C. Choi, S. Hong, Small 5 (2009) 2659
[14] W. Kim, K. Ng, M.E. Kunitake, B.R Conklin, P. Yang, J. Am. Chem. Soc.129 (2007) 7228
[15] W. Chen, H. Yao, C.H Tzang, J. Zhu, M. Yang, S. Lee, Appl. Phys. Lett.88 (2006) 213104
[16] G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Nat. Biotechnol.23 (2005) 1294
[17] Z. Li, Y. Chen, X. Li, T.I. Kamins, K. Nauka, R.S. Williams, Nano Lett. 4 (2004) 245
[18] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, Proc. Natl. Acad. Sci. 101 (2004) 14017
[19] X. Li, P.W. Bohn, Appl. Phys. Lett.77 (2000) 2572
[20] K. Peng, Y. Wu, H. Fang, X. Zhong, Y. Xu, Zhu J. Angew. Chem. Int. Ed.44 (2005) 2737
[21] M. Zahedinejad, M. Khaje, M. Erfanian, F. Raissi,  J. Micromech. Microeng.21 (2011) 065006
[22] C.J.M. Van Rijn, G.J. Veldhuis, S. Kuiper, Nanotechnology9 (1998) 343
[23] V. Berger, O.Gauthier-Lafaye, E. Costard Electron.Lett.33 (1997) 425
[24] S.S. Song, E.U. Kim, H.S. Jung, K.S. Kim, G.Y. Jung, J. Micromech. Microeng.19 (2009) 105022
[25] G. Veronis, R.W. Dutton, S.J. Fan, Appl. Phys. 97 (1997) 093104
[26] S. Dom’inguez, I. Cornago, O. Garc’ia, M. Ezquer, M.J. Rodr’iguez, A.R. Lagunas, J. P’erez-Conde et al. Phot. Nano. Fund. Appl. In press
[27] M. Malekmohammad, M. Soltanolkotabi, A. Erfanian, R. Asadi, S. Bagheri, M. Zahedinejad M. Khaje, et al. J. Europ. Opt. Soc.7 (2012) 12008
[28] M. Malekmohammad, M. Soltanolkotabi, R. Asadi, M.H. Naderi, A. Erfanian, M. Zahedinejad, S. Bagheri, et al. J. Micro/Nanolith. MEMS MOEMS (2012) 013011.
[29] W.K. Choi, T.H. Liew, M.K. Dawood, Nano.Lett.8 (2008) 3800.
[30] C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1983.