Synthesis of Carbon Spheres of Controlled Size by Hydrothermal Method

Document Type : Research Paper


Physics department, Faculty of Science, Arak University, Arak, Iran.



Carbon Spheres were fabricated by hydrothermal method and their structural properties were investigated. Carbon Spheres with average sizes around of 230, 320 and 430 nm were synthesized in different concentration of glucose aqueous solution and different hydrothermal reaction time. The temperature of 180 °C by a hydrothermal reaction was fixed in all of glucose concentration and hydrothermal reaction time. The result showed that the spherical shape of Carbon Spheres was formed in the special concentration of glucose aqueous solution and hydrothermal reaction time.The product obtained was characterized by X-ray diffraction(XRD); Fourier transforms infrared (FTIR) spectra, which have inferred the Carbonic nature of the product. Further,SEM images have revealed the spheres having quite spherical morphology.


[1] A. Ramaprabhu, Nanoscale Res. Lett.76 (2008)145-151.
[2]Z. Dong, B. Yang, J. Jin, J. Li, H. Kang, X. Zhong, R. Li, J. Ma, Nanoscale Res. Lett. 4 (2009)335.
[3] P. Ajayan, Chem. Rev. 99 (1999)1787-1799.
[4] Q. Wang, H. Li, L. Chen, X. Huang, Carbon 39 (2001)2211-2214.
[5] Z. Wen, Q. Wang, Q. Zhang, J. Li, Electrochem. Commun. 9 (2007)1867-1872.
[6] Z. Yi, Y. Liang, X. Lei, C. Wang, J. Sun, Mater. Lett. 61 (2007)4199-4203.
[7] Z. Wang, W. Tian, X. Liu, R. Yang, X. Li, J. Solid State Chem. 180(2008)3360-3365.
[8] Q. Wang, H. Li, L. Chen, X. Huang, Solid State Ion. 43 (2002)152–153.
[9] X. Li, T. Lou, X. Sun, Y. Li, Inorg. Chem. 43 (2004)5442-5449.
[10] X. Sun, Y. Li, Angew. Chem. Int. Ed. 43 (2004)3827-3831.
[11] W. Shen, Y. Zhu, X. Dong, J. Gu, J. Shi, Chem. Lett. 34(2005)840-841.
[12] X. Sun, J. Liu, Y. Li, Chem. Eur. J. 12(2006)2039-2047.
[13] M. Titirici, M. Antonietti, A. Thomas, Chem. Mater. 18(2006)3808-3812.
[14] R. Yang, H. Li, X. Qiu, L. Chen, Chem. Eru. J. 12 (2006)4083-4090.
[15] M. Zheng, J. Cao, X. Chang, J. Wang, J. Liu, X. Ma, Mater. Lett.60(2006)2991-2993.
[16] Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, M. Li, Adv. Funct.Mater. 17(2007)933-938.
[17] J.Joo, Y. Kim, W. Kim, P. Kim, J. Yi, Catal. Commun. 10 (2008)267.
[18] X. Sun, Y. Li, Angew. Chem. Int. Ed. 43 (2004)597-601.
[19] X. Sun, Y. Li, Langmuir 21(2005)6019-6024.
[20]T. Nakamura, Y. Yamada, K. Yano, Microporous Mesoporous Mater. 117(2009)478-485.
[21] H. Qian, F. Han, B. Zhang, Y. Guo, J. Yue, BPeng, Carbon 42(2004)761-766.
[22] J.Joo, P. Kim, W. Kim, J. Kim, N. Kim, J. Yi, Curr. Appl. Phys. 8(2008)814-817.
[23] B. Friedel, S. Weber, Small 2(2006)859.
[24] K. Byrappa, T. Adschiri, Prog. Crystallogr.            Growth Ch. 53 (2007)117-166.
[25] Y. Mi, W. Hu, Y. Dan, Y. Liu, Mater. Lett. 62 (2008)1194-1196.
[26] M. Sevilla, A.B. Fuertes, CARBON. 47 (2009) 2281 –2289.
[27] X. Su, Y. Li,Angew. Chem. Int. Ed. Engl. 43(2004) 597–601.
[28] S. Shaka, T. Ueno, ProgPolym Sci. 6 (1999) 177–191.
[29] O. Bobleter,ProgPolym Sci. 19(1994) 797–841.
[30] M. Serageldi, W. Pan., ThermochimActa. 76(1984)145–160.
[31] D. Van Krevelen, Fuel. 29 (1950) 269–284.
[32] H. Holgat, J. Meyer, J. Teste,AIChE J. 41 (1995) 637–648.
[33] S. Karago,T.Bhaskar, A. Muto, Y.Sakata,JFuel. 84(2005)875–884.
[34] T. Aid, Y. Sat, M. Watanab, K. Tarim, T. Nonak, H. Hattor, J Supercrit Fluids. 40(2007)381–388.
[35] B. Kabyemel,T .Adschir, R. Malalua, K. Arai. IndEngChem Res. 38(1999)2888–2895.
[36] A. Lua, T. Yang, J Colloid Interface Sci. 274(2004)594–601.
[37] C. Araujo, F. Ruiz, J. Martı, H. Terrones, J. MolStruct.THEOCHEM.714(2005)143–146.
[38] V. Ibarra, E. Mun, R. Moline, Org Geochem. 24(1996)725–35.