Synthesis of New N-phenyl Fulleroisoxazoline in the Presence of Fe3O4@SiO2 Nanoparticles as an Efficient Magnetically Recoverable and Reusable Catalyst

Document Type : Research Paper

Authors

Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, 51167 Kashan, I. R. Iran.

10.7508/jns.2014.03.005

Abstract

In this research an effective and appropriate method has been developed for one-pot synthesis of new N-phenyl fulleroisoxazoline using Fe3O4@SiO2 nanoparticles as a green magnetically recyclable catalyst. The prepared catalytic samples were characterized by XRD, SEM, FT-IR and VSM. The products have been characterized by physical and spectroscopic data such as IR, 1H NMR, 13C NMR, and MS analyses.

Keywords


[1] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, R. E. Smalley, Nature 318 (1985) 162.
[2] W. Kraetschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 347 (1990) 354.
[3] E. Nakamura, H. Isobe, Acc. Chem. Res. 36 (2003) 807.
[4] N. Tagmatarchis, H. Shinohara, Mini Rev. Med. Chem. 1 (2001) 339.
[5] T. Da Ros, M. Prato, Chem. Commun. 1999, 663.
[6] W. Jensen, S. R. Wilson, D. I. Schuster, Bioorg. Med. Chem. 4 (1996) 767.
[7] R. Bakry, R. M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C. W. Huck, G. K. Bonn, Int. J. Nano. Med. 2 (2007) 639.
[8] M. Okumura, M. Mikawa, T. Yokawa, Y. Kanazawa, H. Kato, H. Shinohara, Acad. Radiol. 9 (2002) 495.
[9] G. M. Xing, H. Yuan, R. He, X. Y. Gao, L. Jing, F. Zhao, Z. F. Chai, Y. L. Zhao, J. Phys. Chem. B. 112 (2008) 6288.
[10] H. Meng, G. Xing, B. Sun, F. Zhao, H. Lei, W. Li, Y. Song, Z. Chen, H. Yuan, X. Wang, J. Long, C. Chen, X. Liang, N. Zhang, Z. Chai, Y. Zhao, Acs. Nano. 4 (2010) 2773.
[11] M. Prato, J. Mater. Chem. 7 (1997) 1097.
[12] A. Hirsch, The Chemistry of Fullerene; Georg Thieme Verlag: Stuttgart, (1994).
[13] F. Wudl, Acc. Chem. Res. 25 (1992) 157.
[14] Y. Rubin, S. Khan, D. I. Freedberg, C. Yeretzian, J. Am. Chem. Soc. 115 (1993) 344.
[15] C. Bingel, Chem. Ber. 126 (1993) 1957.
[16] K. Fujiwara, Y. Murata, T. S. M. Wan, K. Komatsu, Tetrahedron 54 (1998) 2049.
[17] K. Mikami, S. Matsumoto, A. Ishida, S. Takamuku, T. Suenobu, S. Ukuzumi, J. Am. Chem. Soc. 117 (1995) 11134.
[18] U. Reuther, A. Hirsch, Carbon 38 (2000) 1539.
[19] G. S. Forman, N. Tagmatarchis, H. Shinohara, J. Am. Chem. Soc. 124 (2002) 178.
[20] H. Ishida, K. Itoh, M. Ohno, Tetrahedron 57 (2001) 1737.
[21] H. Ishida, K. Komori, K. Itoha, M. Ohnob, Tetrahedron Lett. 41 (2000) 9839.
[22] F. Langa, F. Oswald, C.R. Chimie 9 (2006) 1058.
[23] A. Hirsch, M. Brettreich, Fullerenes: Chemistry and Reactions; Wiley-VCH Verlag GmbH & Co.: KGaA, 2005.
[24] F. Langa, J. F. Nierengarten, Fullerenes: Principles and Applications; RSC Publishing, 2007.
[25] M. A. Yurovskaya, I. V. Trushkov, Russ. Chem. Bull. Int. 51 (2002) 367.
[26] F. Liu, W. Du, Q. Liang, Y. Wang, J. Zhang, J. Zhao, S. Zhu, Tetrahedron Lett. 66 (2010) 5467.
[27] H. Kitamura, K. Kokubo, T. Oshima, Org. Lett. 9 (2007) 4045.
[28] V. A. Ioutsi, A. A. Zadorin, P. A. Khavrel, N. M. Belov, N. S. Ovchinnikova, A. A. Goryunkov, O. N. Kharybin, E. N. Nikolaev, M.A. Yurovskaya, L.N. Sidorov, Tetrahedron 66 (2010) 3037.
[29] G. W. Wang, H. T. Yang, P. Wu, C. B. Miao, Y. Xu, J. Org. Chem. 71 (2006) 4346.
[30] G. W. Wang, H. T. Yang, Tetrahedron Lett. 48 (2007) 4635.
[31] B. M. Illescas, R. Martinez-Alvarez, J. Fernandez-Gadeab, N. Martin, Tetrahedron 59 (2003) 6569.
[32] B. Zhu, G. W. Wang, Org. Lett. 11 (2009) 4334.
[33] F.B. Li, X. You, G. W. Wang, Org. Lett. 12 (2010) 4896.
[34] M. S. Meier, M. Poplawska, J. Org. Chem. 58 (1993) 4524.
[35] L. Perez,; M. E. El-Khouly, P. De la Cruz, Y. Araki, O. Ito, F. Langa, Eur. J. Org. Chem. (2007) 2175.
[36] F. Langa, P. De la Cruz, E. Espíldora, A. González-Cortés, A. De la Hoz, V. López-Arza, J. Org. Chem. 65 (2000) 8675.
[37] J. Modin, H. Johansson, H. Grennberg, Org. Lett. 7 (2005) 3977.
[38] H. Irngartinger, A. Weber, T. Escher, Liebigs Ann. (1996) 1845.
[39] M. Ohno, A. Yashiro, S. Eguchi, Synlett. 9 (1996) 827.
[40] H. T. Yang, X. J. Ruan, C. B. Miao, X. Q. Sun, Tetrahedron Letters 51 (2010) 6056.
[41] N. Tran, T. J. Webster, J. Mater. Chem. 20 (2010) 8760
[42] A. Sandhu, H. Handa, M. Abe, Nanotechnology, 21 (2010) 442001.
[43] . R. Hao, R. J. Xing, Z. C. Xu, Y. L. Hou, S. Gao, S. H. Sun, Adv Mater 22 (2010) 2729.
[44] O. Veiseh, J. W. Gunn, M. Q. Zhang Adv Drug. Deliv. Rev. 62 (2010) 284.
[45] J. Ge, T. Huynh, Y. Hu, Y. Yin, Nano Lett. 8 (2008) 931.
[46] W. Lai, J. Garino, P. Ducheyne Biomaterials 23 (2002) 213.
[47] M. Stjerndahl, M. Andersson, H. E. Hall, D. M. Pajerowski, M. W. Meisel, R. S. Duran Langmuir 24 (2008) 3532.
[48] Y. A. Barnakov, M. H. Yu, Z. Rosenzweig, Langmuir, 21 (2005) 7524.
[49] R. He, X. G. You, J. Shao, F. Gao, B. F. Pan, D. X. Cui, Nanotechnol. 18 (2007) 315601.
[50] J. Safaei-Ghomi, R. Masoomi, Ultrason. Sono. Chem. 23 (2015) 212.
[51] J. Safaei-Ghomi, R. Masoomi, RSC Adv. 4 (2014) 2954.
[52] J. Safaei-Ghomi, R. Masoomi, Scientia iranica. In press (2014).
[53] Y. Hu, Z. Zhang, H. Zhang, L. Luo, S. Yao. J Solid State Electro Chem. 16 (2012) 857.
[54] D. Yang, J. Hu, S. Fu, J. Phys. Chem C. 113 (2009) 7646.
[55] R. Massart, IEEE Trans Magn. 17 (1981) 1247.
[56] B.S. Furniss, A.J. Hannaford, P.W.G. Smith, A.R, Tatchell, Vogel’s textbook of practical organic chemistry, 5th Edn. Pearson Education, Dorling Kindersley (2008).
[57] M. Mazloum Ardakani, J. safaei-Ghomi, M. Mehdipoor, New J. Chem. 27 (2003) 1140.