Application of Magnetite Nanoparticles in Phenylalanine Removal from Water Samples

Document Type : Research Paper

Authors

Department of Chemistry, University of Zabol, P. O. Box 98615-538, Zabol, I.R. Iran

10.7508/jns.2013.03.010

Abstract

The purpose of the current research is investigating the phenylalanine removal by using magnetic nanoparticles (Fe3O4) from water samples. The effect of pH, contact time and phenylalanine concentration on phenylalanine adsorption efficiency by magnetite nanoparticles are studied in a batch system. Transmission electron microscopy (TEM), X-ray Diffraction Patterns (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterize the synthesized magnetite nanoparticles.

Keywords


[1] C. Medina, M. Martinez, A. Radomski, O. Corrigan, M. Radom, Pharmacol. Rev. 150 (2007) 552–556.
[2] P. Nooraei, B. Shareghi, M. Salavati-Niasari, H. Shahbazkia, A. Semnani, J. Nano. Struct. 2 (2012) 35–41.
[3] M. Mousavi-Kamazani, M. Salavati-Niasari, H. Emadi, Mater. Res. Bull. 47 (2012) 3983–3990.
[4] M. Mousavi-Kamazani, M. Salavati-Niasari, H. Emadi, Micro. Nano. Lett. 7 (2012) 896–900.
[5] S. Hosseinpour-Mashkani , F. Mohandes, M. Salavati-Niasari, K. Venkateswara-Rao, Mater. Res. Bull. 47 (2012) 3148–3159.
[6] M. Sabet, M. Salavati-Niasari, F. Davar, Micro. Nano. Lett. 11 (2011) 904–908.
[7] H. Tamura, R. Furrichi, Colloid Interface Sci. 195 (1997) 241–246.
[8] R. Mckenzie, Aust. J. Soil. Res. 18 (1980) 61–65.
[9] F. Silverio, M. Dosreis, J. Tronton, B. Vlim, J. Mater. Sci. 43 (2008) 434–439.
[10] S. Hong, M. Bruening, J. Membr. Sci. 280 (2006) 1–5.
[11] M. Han, Y. Yun, Biochem. Engin. J. 36 (2007) 2–7.
[12] Y. Chao, T. Liang, Désalin. 221 (2008) 433–439.
[13] T. Oshima, R. Saisho, K. Ohe, Y. Baba, K. Ohto, J. React. Funct. Polym. 69 (2009) 105–110.
[14] C. Namasivayam, M. Dineshkumar, K. Selvi, R. Ashruffunissabegum, T. Vanathir, T. Amuna, J. Biomass Bioenergy 21 (2001) 477–483.
[15] J. Orthman, H. Zhu, G. LU, J. Sep. Sci. Technol. 31 (2003) 53–59.
[16] S. Pollard, G. Fowler, C. Sollars, J. Sci. Total Environ. 116 (1992) 31–52.
[17] J. Zhi, Y. Guo, H. Xu, J. Mater. Chem. Phys. 87 (2004) 96–101.
[18] C. Tizaouim, M. Slater, J. Process. Saf. Environ. Protect. 81 (2003) 107–113.
[19] Z.  Peng, K. Hidajat, M. Uddin, J. Colloid. Interface Sci. 271 (2004) 277–283.
[20] H. Namduri, S. Nasrazadani, Corrosion Sci. 50 (2008) 2493–2497.
[21] Z. Peng, K. Hidajat, M. Uddin, Colloid Surf. B. J. Biointerface 35 (2004) 169–174.
[22] H. Chas, Y. Do, P. Huang. J. Magn. Magn. Mater. 304 (2006) 415–417.
[23] M. Patric S. Grant, J. Meshane. Langmir 18 (2002) 6338–6334.
[24] I. Bruce, T. Sen, Langmir 21 (2005) 7029–7035.
[25] Z. Peng K. Hidajat, M. Uddin, Colloid Surf. B. J. Biointerface 33 (2004) 15–21.
[26] T. Goppeat, R. Muller, J. Pharm. 302 (2005) 172–186.
[27] M. Fuentes, J. Guisan, J. Biosens. Bioelectron. 620 (2004) 1380–1387.
[28] M. Maekenziew, J. Immunol. Methods 52 (2004) 353–367.
[29] K. Giles, K. Irudayaraj, Anal. Chem. 78 (2006) 3234–3241.
[30] N. Shamim, Z. Peng, L. Hong, K. Hidajat, M. Uddin, Inter. J. Nano. Sci. 4 (2005) 187–195.
[31] M. Yamaura, R. Camilo, M. Felinto, J. Alloy. Compd. 344 (2002) 152–156.
[32] D. Kin, S. Lee, Y. Lee, Current. Appl. Phys. 6 (2006) 242–246.
[33] S. Huang, M. Liao, D. Chen, Sep. Purif. Technol. 51 (2006) 113–117.
[34] D. Maity, D. Agrawal, J. Magn. Magn. Mater. 308 (2007) 46–51.
[35] M. Ishii, M. Nakahira, Solid State Commun 11 (1972) 209–212.