Study of Non-Isothermal Crystallization Kinetics of Biodegradable Poly(ethylene adipate)/SiO2 Nanocomposites

Document Type : Research Paper


1 Department of Chemistry, University of Kashan, Kashan, Iran

2 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran , Department of Engineering, University of Kashan, Kashan, Iran



Poly(ethylene adipte) and poly(ethylene adipate)/silica nanocomposite (PEAd/SiO2) containing 3 wt. % SiO2  were prepared by an in situ method. The examinations on the non-isothermal crystallization kinetic behavior have been conducted by means of differential scanning calorimeter (DSC). The Avrami, Ozawa, and combined Avrami and Ozawa equations were applied to describe the crystallization kinetics and to determine the crystallization parameters of the prepared PEAd/SiO2 nanocomposites. It is found that the inclusion of the silica nanoparticles can accelerate the nucleation rate due to heterogeneous nucleation effect of silica on the polymer matrix. According to the obtained results, the combined Avrami and Ozawa equation shown that the better model for examination of this system.


[1] G.Z. Papageorgioua, D.N. Bikiaris, D.S. Achiliasa, E. Papastergiadisb, A. Docoslis Thermchim. Acta. 515 (2011) 13–23.
[2] L.Yu, K. Dean, L. Lin. Prog. Polym. Sci. 31 (2006) 576–602.
[3] M. Amirian, A. Nabipour Chakoli, W.Cai, J.H. Sui, Iran. Polym. J. 21 (2012) 165-174.
[4] A. Kumari, S.K. Yadav, S.C. Yadav, Coll. Surf. B: Biointerfaces 75 (2010) 1-18.
[5] V. Tserki, P. Matzinos, E. Pavlidou, D. Vachliotis, C.Panayiotou, Polym. Deg. and Stab. 91(2006) 367–376.
[6] Y. Peneva, L.  Minkova, Polym. Test. 25 (2006) 366–376.
[7] D.S. Achilias, D.N. Bikiaris, E. Papastergiadis, D. Giliopoulos, G.Z. Papageorgiou, Macromol Chem Phys 211 (2010) 66–79.
[8] R.C. Rowe, P.J. Sheskey, M.E. Quinn, editors. Handbook of Pharmaceutical Excipients. 6th ed. Pharmaceutical Press and American Pharmacists Association (2009).
[9] X. Wen, Y. Lin, C. Han, K. Zhang, X. Ran, Y. Li, L. Dong. J. App. Polym. Sci. 114(2009) 3379-3388.
[10] M.Mohsen-nia, M.R.Memarzadeh, Polym. Bull. 70 (2013) 2471-2491.
[11] M. Avrami. J Chem Phys 7 (1939) 1103–1112.
[12] M. Avrami. J Chem Phys 8 (1940) 212–224.
[13] T. Ozawa, Polymer 12 (1971) 150-158.
[14] J.Y. Kim, H.S. Park, S.H. Kim, Polymer 47 (2006) 1379–1389.
[15] M.C. Kuo, J.C. Huanga, M. Chena, Mat. Chem. and Phys. 99 (2006) 258–268.
[16] T. Liu, Z. Mo, S. Wang, H. Zhang, Polym. Eng. Sci. 37 (1997) 568-575.
[17] H.E. Kissinger, J. Res. Natl. Stand. 57 (1956) 217- 221.