Synthesis and Investigation the Catalytic Behavior of Cr2O3 Nanoparticles

Document Type : Research Paper


1 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Department of Chemistry, Faculty of Science, Zanjan University, P.O. Box 45195-313 Zanjan, I.R. Iran



The use of an inorganic phase in water-in-oil (w/o) microemulsion has recently received considerable attention for preparing metal oxide nanoparticles. This is a technique, which allows preparation of ultrafine metal oxide nanoparticles within the size range 40 to 80 nm. Preparation of nano chromium (III) oxide studied investigated in the inverse microemulsion system. Therefore the nucleation of metal particles proceeds in the water capsules of the microemulsion. the main advantage of this method is easily controllable conditions with using low cost chromium source is merit to be considered for scaling up by industrial researchers. Besides we mainly focus on the catalytic property nano chromium (III) oxide. Oxidation of aromatic aldehyde/alcohol to the corresponding carboxylic acids can be performed highly efficiently in the presence of a catalytic amount of nano chromium (III) oxide in THF as solvent under mild conditions.


[1] P.M.T. Cavalcante, M. Dondi, G. Guarini, M.  Raimondo, G. Baldi, Dyes Pigments, 2009, 80, 226-232.
[2] (a) T.V. Malleswara Rao, E.M. Zahidil, A. Sayari, J. Mol. Catal. A. 301 (2009) 159-165. (b) Sh. Deng, H. Li, S. Li, Y.  Zhang, Journal of Molecular Catalysis. A, Chemical, 268 (2007) 169-175.
[3] (a) G. Dabrilaite-Kudzmiene, S. Kitrys, MATERIALS SCIENCE, 19 (2013) 89-95 (b) T.V. Rao, Y. Yang, A. Sayari, J. Mol. Catal. A. 301 (2009) 152-158.
[4] G. Wanga, L. Zhang, J. Deng, H. Dai, H. He, C. Tong, Appl. Catal. A. 355 (2009) 192-201.
[5] x. Pang, K. Gao, F. Luo, Y. Emirov, A.A. Levin, A.A. Volinsky, Thin Solid Films 517 (2009) 1922-1927.
[6]   X. Hou, K.L. Choy, Thin Solid Films, 516 (2008)8620-8624.
[7]  R. Vijay, R. Sundaresan, M.P. Maiya, S. Srinivasa Murthy, J. Alloys Compd. 424 (2006) 289-293.
[8]  A. Patah, A, Takasaki, J.S. Szmyd, Int. J. Hydrogen Energy 34 (2009) 3032-3037.
[9]  J.L. Bobet, S. Desmoulins-Krawiec, E. Grigorova, F. Cansell, B. Chevalier, J. Alloys Compd. 351 (2003) 217-221.
[10] M.D. Bijker, J.J.J. Bastiaens, E.A. Draaisma, L.A.M. Jong, E. Sourty, S.O. Saied, J.L. Sullivan, Tribol. Int. 36 (2003) 227-233.
[11] X. He, D. Antonelli, Angew. Chem. Int. Ed. 114 (2002) 222-238.
[12] X. He, D. Antonelli, Angew. Chem. Int. Ed. Engl. 41 (2002) 214-229.
[13] Z. Pei, H. Xu, Y. Zhang, J. Alloys Compd. 468 (2009) L5-L8.
[14] L. Li, Z. Zhu, X. Yao, G. Lu, Z. Yan. Micropor. Mesopor. Mater. 112 (2008) 621-626.
[15] M.D. Lima R. Bonadimann, M.J. Andrade, J.C. Toniolo, C.P. Bergmann, J. Eur. Ceram. Soc. 26 (2006) 1213-1220.
[16] N. Pinna, G. Garnweitner, M, Antonietti, M. Niederberger, Adv. Mater. 16 (2004) 2196-2200.
[17] D.W. Kim, S.I. Shin, J.D. Lee, S.G. Oh, Mater. Lett. 58 (2004) 1894-1898.
[18] J. Mougin, T. Le Bihan, G. Lucazeau, J. Phys. Chem. Solids 62 (2001) 553-563.
[19] Z.C. Zhong, R.H. Cheng, J. Bosley P.A Dowben, D.J. Sellmyer, Appl. Surf. Sci. 181 (2001) 196-202.
[20] T. Tsuzuki, P.G. Mc Cormick, Acta Mater. 48 (2000) 2795-2801.
[21] U. Balachandran, R.W. Siegel, Y.X. Liao, T.R. Askew, Nanostruct. Mater. 5 (1995) 505-512.