Fabrication of Inorganic Sensitized Solar Cells by Drop Casting Deposition of PbSe and PbTe on the TiO2 Surface

Document Type : Research Paper

Authors

1 Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran

Abstract

In this work, PbSe and PbTe sensitized TiO2 solar cells were fabricated. PbSe and PbTe nanostructure was deposited on the TiO2 surface via a drop cast method. The fabricated surfaces were examined by atomic force microscopy (AFM). Also the optical properties of the layers were studied by diffuse reflectance spectroscopy (DRS) spectra. The morphology of the surfaces was obtained by scanning electron microscopy (SEM) images. The structure and phase of the obtained materials were studied by X-ray diffraction pattern (XRD). Furthuremore chemical elements of the fabricated layers were examined by energy dispersive X-ray analysis (EDX) spectra. The solar cells were made by the fabricated layers, Pt as a counter electrode, I3-/I- electrolyte, surlyn as a sealer and silver paste to enhance collection of the produced current.

Keywords


1. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of Titanium Oxide Nanotube. Langmuir. 1998;14(12):3160-3.
2. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania Nanotubes Prepared by Chemical Processing. Adv Mater. 1999;11(15):1307-11.
3. Chen Q, Zhou W, Du GH, Peng LM. Trititanate Nanotubes Made via a Single Alkali Treatment. Adv Mater. 2002;14(17):1208-11.
4. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N. Formation mechanism of TiO2 nanotubes. Appl Phys Lett. 2003;82(2):281-3.
5. Yuan Z-Y, Zhou W, Su B-L. Hierarchical interlinked structure of titanium oxide nanofibers. Chem Commun. 2002(11):1202-3.
6. Yu J, Yu JC, Ho W, Wu L, Wang X. A Simple and General Method for the Synthesis of Multicomponent Na2V6O16•3H2O Single-Crystal Nanobelts. J Am Chem Soc. 2004;126(11):3422-3.
7. Zhang D, Qi L. Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chem Commun. 2005(21):2735.
8. Du GH, Chen Q, Che RC, Yuan ZY, Peng LM. Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett. 2001;79(22):3702-4.
9. Safardoust-Hojaghan H, Salavati-Niasari M. Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J Clean Prod. 2017;148(Supplement C):31-6.
10. Lee E, Kim C, Jang J. High-Performance Förster Resonance Energy Transfer (FRET)-Based Dye-Sensitized Solar Cells: Rational Design of Quantum Dots for Wide Solar-Spectrum Utilization. ‎Chem. Eur. J. 2013;19(31):10280-6.
11. Wu J-J, Liao W-P, Yoshimura M. Soft processing of hierarchical oxide nanostructures for dye-sensitized solar cell applications. Nano Energy. 2013;2(6):1354-72.
12. Smith YR, Subramanian V. Heterostructural Composites of TiO2Mesh−TiO2Nanoparticles Photosensitized with CdS: A New Flexible Photoanode for Solar Cells. J. Phys. Chem. C. 2011;115(16):8376-85.
13. Santra PK, Kamat PV. Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. J Am Chem Soc. 2012;134(5):2508-11.
14. Bayram S, Halaoui L. Amplification of Solar Energy Conversion in Quantum-Confined CdSe-Sensitized TiO2Photonic Crystals by Trapping Light. Part. Part. Syst. Char. 2013;30(8):706-14.
15. Liu F, Zhu J, Wei J, Li Y, Hu L, Huang Y, et al. Ex Situ CdSe Quantum Dot-Sensitized Solar Cells Employing Inorganic Ligand Exchange To Boost Efficiency. J. Phys. Chem. C. 2013;118(1):214-22.
16. Seabold JA, Shankar K, Wilke RHT, Paulose M, Varghese OK, Grimes CA, et al. Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays. Chem Mater. 2008;20(16):5266-73.
17. Tachan Z, Shalom M, Hod I, Rühle S, Tirosh S, Zaban A. PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells. J. Phys. Chem. C. 2011;115(13):6162-6.
18. Wang H, Kubo T, Nakazaki J, Kinoshita T, Segawa H. PbS-Quantum-Dot-Based Heterojunction Solar Cells Utilizing ZnO Nanowires for High External Quantum Efficiency in the Near-Infrared Region. J. Phys. Chem. Lett. 2013;4(15):2455-60.
19. Safardoust-Hojaghan H, Shakouri-Arani M, Salavati-Niasari M. A facile and reliable route to prepare of lead sulfate nanostructures in the presence of a new sulfur source. J. Mater. Sci. Mater. Electron. 2015;26(3):1518-24.
20. Safardoust-Hojaghan H, Shakouri-Arani M, Salavati-Niasari M. Structural and spectroscopic characterization of HgS nanoparticles prepared via simple microwave approach in presence of novel sulfuring agent. Trans. Nonferrous Met. Soc. China. 2016;26(3):759-66.
21. Cui Y, Wang J, Plissard SR, Cavalli A, Vu TTT, van Veldhoven RPJ, et al. Efficiency Enhancement of InP Nanowire Solar Cells by Surface Cleaning. Nano Lett. 2013;13(9):4113-7.
22. Yang L, McCue C, Zhang Q, Uchaker E, Mai Y, Cao G. Highly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe). Nanoscale. 2015;7(7):3173-80.