DMMP Sensing Performance of Undoped and Al Doped Nanocrystalline ZnO Thin Films Prepared by Ultrasonic Atomization and Pyrolysis Method

Document Type : Research Paper

Authors

1 Pratap College Amalner Dist Jalgaon Affiliated to North Maharashtra Jalgaon, Maharashtra, India.

2 Dept. of Physics, Pratap College Amalner Dist. Jalgaon, Affiliated to North Maharashtra University Jalgaon, Maharashtra, India

3 Dept. of Physics, Pratap College Amalner, Dist. Jalgaon, Affiliated to North Maharashtra University Jalgaon, Maharashtra India

Abstract

Highly textured undoped (pure) and Al doped ZnO nanocrystalline thin films prepared by ultrasonic atomization and pyrolysis method are reported in this paper. ZnCl2 water solution was converted into fine mist by ultrasonic atomizer (Gapusol 9001 RBI Meylan, France). The mist was pyrolyzed on the glass substrates in horizontal quartz reactor placed in furnace. The Structural and microstructural properties of the films were characterized by X-Ray Diffractometer (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). FESEM and TEM analysis revealed that the ZnO thin films prepared were porous monodisperse and nanocrystalline in nature, with average particle size of 15 nm. The optical properties of thin films were characterized by UV-Visible and Photoluminescence (PL) spectroscopy. The films were cut in typical size and electrical contactswere made using silver paste and copper wires. The thin film based sensors so prepared were tested on exposing the simulants of chemical warfare agent (CWA) like: DMMP, CEES and CEPS. Sensors showed better response to DMMP (a simulant of sarin gas) as compared with its responses to CEES and CEPS. Al (1 at%) doped ZnO thin film based sensor showed highest response to DMMP (2 ppm). The simulant response, selectivity and response-recovery time of the sensors were measured and presented. The role of Al dopant in ZnO to enhance DMMP response is discussed.

Keywords


1. Tomchenko AA., Harmer GP., Marquis BT. Detection of chemical warfare agents using nanostructured metal oxide sensors. Sens. Actuators B, 2005; 108: 41–55.
2. CristianOlguina, NicolasLaguarda-Miro, LluisPascual, EduardoGarcia-Breijo, Ramon Martinez-Manez, JuanSoto, An electronic nose for the detection of Sarin, Soman and Tabun mimics and interfering agents. Sens. Actuators B,2014; 202: 31– 37.
3. WagnerGW., BartramBW. Reactions of VX, HD and their simulants with NaY and AgY zeolites: desulfurization of VX on AgY. Langmuir,1999; 15: 8113–8118.
4. RaberE., McGuireR. Oxidative decontamination of chemical and biological warfare agents using L-Gel.J.Hazard.Mater. B,2002; 93: 339–352.
5. SingerBC., Hodgson AT., Destallats H., Hotchi T, Revzan KL., Sextro RG, Indoor sorption of surrogates for sarin and related nerve agents. Environ. Sci. Technol, 2005; 39: 3203–3214.
6. SomaniS. M., Solana RP., Dube S.N., Toxicodynamics of nerve agents.In S. Somani (Ed), Chem. Warfare Agents 68 (1992).
7. HillH. H., MartinS. J., Conventional analytical methods for chemical warfare agents.Pure Appl. Chem,2002; 74 (12): 2281–2291.
8. Eiceman GA., Guest editorial report,Quiet service from a field measurement technology; Ion mobility spectrometry is used worldwide for on-site analysis and current advances suggest a role in field measurements in the future. Field Anal. Chem. Technol, 2000; 4 (5): 217-218.
9. Utrianen M., Karpanoja E., PaakkanenH.Combining miniaturized ion mobility spectrometer and metal oxide gas sensor for the fast detection of toxic chemical vapors, Sens. Actuators B,2003; 93: 17-24.
10. Proctor CJ., Todd JFJ.Alternative reagent ions for plasma chromatography.Anal. Chem, 1984; 56: 1794-1797.
11. Lawrence AH., NeudorflP.Detection of ethylene glycol dinitrate vapors by ion mobility spectrometry using chloride reagent ions. Anal. Chem,1988; 60: 104-109.
12. SpanglerGE., Campbell DN., Carrico JP. Acetone reactant ions for IMS, in: Proceedings of the PittCon Conference on Analytical Chemistry and Applied Spectroscopy, Atlantic City, 1991, pp. 13–15.
13. Nimal AT., MittalU., SinghM., KhanejaM., Kannan GK., Kapoor JC.Devel- opment of handheld SAW vapor sensors for explosives and CW agents, Sens. Actuators B, 2009; 135: 399–410.
14. HammondMH.,Johson KJ., Rose-Pehrsson SL., ZieglerJ., WalkerH., CoudyK., GaryD., TillettD. A novel chemical detector using cermet sensors and pat- tern recognition methods for toxic industrial chemicals, Sens. Actuators B, 2006; 116: 135–144.
15. Jenkins AL., Uy OM., Murray GM. Polymer-based lanthanide luminescent sensor for detection of the hydrolysis product of the nerve agent Soman in water, Anal. Chem, 1999; 71: 373–378.
16. Lenz DE., Brimfield AA., Cook LA. Development of immunoassays for detection of chemical warfare agents, in: DA. Aga, EM. Thurman (Eds.), Immunochemical Technology for Environmental Applications, American Chemical Society, Washington, 1997, pp. 77–86.
17. Kientz CE., Hooijschuur EWJ., BrinkmanUA.Th. Capillary electrophoresis coupled online with flame photometric detection: determination of alkylphos- phonic acids, J. Microcolumn, 1997; Sep. 9: 253–259.
18. WheelisM. Biotechnology and chemical weapons control, Pure Appl. Chem, 2004; 74: 2247–2251.
19. Mohr GJ. New chromogenic and fluorogenic reagents and sensors for neutral and ionic analytes based on covalent bond formation – a review of recent developments, Anal.Bioanal.Chem, 2006; 386: 1201–1214.
20. ClimentE., Marti A., RoyoS., Martínez-ManezR., MarcosM.D., SancenonF., SotoJ., Costero AM., GilS., ParraM. Chromogenic detection of nerve agent mimics by mass transport control at the surface of bifunctionalized silica nanoparticles, Angew. Chem. Int. Ed. 2010; 49: 5945–5948.
21. WangF., GuH., SwangerT.M. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents, JACS, 2008; 130: 5392– 5393.
22.KorotcenkovG., Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, Sens. Actuators B, 2005; 1: 209–232.
23. CominiE., Metal oxide nano-crystals for gas sensing, Anal. Chim.Acta, 2006; 1: 28–40.
24. BarsanN., KoziejD., WeimarU., Metal oxide-based gas sensor research: how to? Sens. Actuators B, 2007; 1: 18–35.
25. KorotcenkovG., Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B, 2007; 1: 1–23.
26. ThompsonT. L.,YatesJ. T.,Surface Science Studies of the Photoactivation of TiO2-New Photochemical Processes, Chem. Rev,2006; 106: 4428–4453.
27. NelsonJ., ChandlerR. E., Random walk models of charge transfer and transport in dye sensitized systems, Coord. Chem. Rev,2004; 248:1181–1194.
28. FujishimaA., ZhangX.,TrykD. A., TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep, 2008; 63:515-585.
29. Elser MJ., Berger T., Brandhuber D., Bernardi J., Diwald O., KnözingerE.Particles Coming Together: Electron Centers in Adjoined TiO2 Nanocrystals.J. Phys. Chem. B, 2006; 110: 7605–7608.
30. Ekerdt JG., Klabunde KJ.,  Shapley JR., White JM., YatesJT.Surface chemistry of organophosphorus compounds.J. Phys. Chem., 1988; 92: 6182–6188.
31. ThompsonTL., Panayotov DA., YatesJT.Adsorption and Thermal Decomposition of 2-Chloroethyl Ethyl Sulfide on TiO2 Surfaces, J. Phy. Chem. B, 2004; 108: 16825-16833.
32. MitchellMB., Sheinker VN., MintzEA.Adsorption and Decomposition of Dimethyl Methylphosphonate on Metal Oxides, J. Phy. Chem. B, 1997; 101: 11192-11203.
33. Mitchell MB., Sheinker VN., Tesfamichael AB., Gatimu EN., Nunley M.Decomposition of Dimethyl Methylphosphonate (DMMP) on Supported Cerium and Iron Co-Impregnated Oxides at Room Temperature, J. Phy. Chem. B,2003; 107: 580-586.
34. Gellings PJ., Bouwmeester HJ. M.Solid state aspects of oxidation catalysis, Catalysis Today, 2000; 58: 1–53.
35. Wachs IE., Jehng JM.,  Ueda W.Determination of the Chemical Nature of Active Surface Sites Present on Bulk Mixed Metal Oxide Catalysts, J. Phy. Chem. B,2005; 109: 2275-2284.
36. Henderson M.A.Complexity in the Decomposition of Formic Acid on the TiO2(110) Surface, J. Phy. Chem. B, 1997; 101: 221-229.
37. Singh ND., Yan CY., Lee PS. Room temperature CO gas sensing using Zn-doped In2O3single nanowire field effect transistors, Sens. Actuators B, 2010; 150:15–24.
38. HanN., Wu XF., Zhang DW., Shen GL., Liu HD., Chen YF.CdO activated Sn-doped ZnO for highly sensitive, selective and stable formaldehyde sensor, Sens. Actuators B, 2011; 152: 324–329.
39. SongP., WangQ., Yang ZX. Preparation, characterization and acetone sensing g properties of Ce-doped SnO2 hollow spheres, Sens. Actuators B, 2012; 173: 839–846.
40. Azmy NAN., AbdullahH., Naim NM., Hamid AA., ShaariS., MokhtarW.H.M.W., Gamma irradiation effect on the structural, morphology and electrical proper-ties of ZnO–CuO doped PVA nanocomposite thin films for Escherichia coli sensor, Radiat. Phys. Chem, 2014; 103: 108–113.
41. BiL., Dong XT., Yu YH., Room-temperature phosphorescence sensor based on manganese doped zinc sulfide quantum dots for detection of urea, J. Lumin, 2014; 153: 356–360.
42. HanDan, SongPeng, ZhangSu, ZhangHuihui, XuQi, WangQiEnhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method, Sens. Actuators B, 2015; 216: 488–496.
43. Patil LA., Shinde MD., Bari AR., Deo VV.Novel trapping system for size wise sorting of SnO2 nanoparticles synthesized from pyrolysis of ultrasonically atomized spray for gas sensing, Sens. Actuators B, 2009; 143: 316–324.
44. Patil LA., Deo VV., Shinde MD., Bari AR., Kaushik MP., Sensing of 2-chloroethyl ethyl sulfide (2-CEES) – a CWA simulant – using pure and platinum doped nanostructured CdSnO3 thin films prepared from ultrasonic spray pyrolysis technique, Sens. Actuators B, 2011; 160: 234– 243.
45. McCluskey MD, Jokela SJ. “Defects in ZnO,” JApplied Physics, 2009; 106: 071101-071113.
46. IlicanS., CaglarY., CaglarM. (Preparation and characterization of ZnO thin films
deposited by sol-gel spin coating method), J. Optoelectron. Adv. Mater., 2008; 10: 2578-2583.
47. Ahn MW., Park KS., Heo JH., Park JG., Kim DW., Choi KJ., Lee JH., Hong SH. “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor,” App. Phys. Letters, 2008; 93(26): 263103-263105.
48. HanN., HuP., ZuoA., ZhangD., TianY., Chen Y. “Photoluminescence investigation on the gas sensing property of ZnOnanorods prepared by plasma enhanced CVD method,” Sens. Actuators B, 2010;145(1): 114–119.
49. ZhangT., ZengY., Fan HT., Wang LJ., WangR., FuWY.,Yang HB., “Synthesis, optical and gas sensitive properties of large-scale aggregative flowerlike ZnO nanostructures via simple route hydrothermal process,” J.of Physics D: Appl.Phys, 2009; 42(4): 045103-045110.
50. Schoenmakers GH., VanmaekelberghD., Kelly JJ.Study of charge carrier dynamics at illuminated ZnO photoanodes, J. Phys. Chem, 1996; 100: 3215-3220.
51. Zhezhe W., Hongchao S., Rongjun Z., Xinxin X., Yude W.,ZnO Nanoparticles as Sensing Materials with High Gas Response for Detection of n-butanol Gas, J Nanostruct, 2017; 7(2): 103-11.
52. Mohammad HM, Mehdi A., Mohammad S.,Preparation and Characterization of ZnO Thin Layers with Various Percentages of Gallium Impurities, JNanostruct, 2017; 7(3): 194-199.
53. Xu Liu, Yan Yang, Yunfei Han, Lihong Wang, Gang Chen, Xuechun Xiao, Yude Wang, H2O2-based Green Corrosion Route to ZnOMicrorodsPhotocatalysts on Zn Plate, J Nanostruct, 2017; 7(1): 82-87.
54. Morrison S. Roy, Semiconductor gas sensors, 1982Sens. Actuators, 1982; 2: 329-341.
55. Yamazoe N New approaches for improving semiconductor gas sensors Sens. Actuators B, 1991; 5(1-4): 7-19.
56. Egashira M., Shimizu Y., Takao Y., Sako S., Variations in I–V characteristics of oxide semiconductors induced by oxidizing gases, 1996 Sens. Actuators B, 1996; 35:62-67.
57. Kohl D.The role of noble metals in the chemistry of solid-state gas sensors, Sens. Actuators B, 1990; 1: 158–165.