Selective Magnetic Removal of Pb(II) from Aqueous Solution by Porphyrin Linked-Magnetic Nanoparticles

Document Type : Research Paper

Authors

Research institute of petroleum industry, P.O. Box 14665-137, Tehran, Iran

10.7508/jns.2012.04.003

Abstract

The discharge of lead containing effluents into the environment and water bodies is harmful for the human, animals, aquatic flora and fauna. Herein, a novel surface engineered magnetic nanoparticle for removing Pb2+  ions was studied. After surface modification of the magnetite by 3-amino-propyltriethoxysilane (APTES) magnetic nanoparticles with covalently linked porphyrins were synthesized. Two atropisomers of  meso-tetrakis(2-carboxy-4-nonylphenyl) porphyrin (TCNP) were tested to analyze the atropisomeric effect on lead uptake. For characterize the synthesized nanosorbents methods like: Transform Infrared Spectroscopy, X-ray diffraction, Transmission Electron Microscopy and Thermo-Gravimetric Analysis were used. The effects of pH, contact time, sorbent dosage and some co-existing cations were investigated. Regeneration of lead adsorbed material could be possible and the modified magnetic nanoparticles exhibited good reusability. The use of such a system can provide fast and efficient removal of the lead ion by using an external magnetic field. The competitive adsorption tests showed good adsorption selectivity for lead ion.

Keywords