Spectroscopic Studies on the Interaction of Nano-TiO2 with Lysozyme

Document Type : Research Paper


1 Department of Biology, University of Shahrekord, P.O. Box: 115, Shahrekord, I. R. of Iran

2 Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O.BOX.87317-51167,I. R. of Iran



In the present study, the interaction between nano-TiO2 and lysozyme was investigated by the method of UV-Vis detection and fluorescence spectroscopic techniques. The thermal denaturation of lysozyme has been investigated in the presence and absence of nano-TiO2 over the temperature range (293-373) K in different buffer and pH, using temperature scanning spectroscopy. The presence of nano-TiO2 caused the destabilization of lysozyme resulting in a decrease in the temperature of unfolding with an increase in nano-TiO2 concentration.


[1] H. Wang, R.L. Wick, B. Xing, Environmental Pollution 157 (2009) 1171-1177.
[2] Z. Xu, X.W. Liu, Y.S. Ma, H.W. Gao, Environmental Science and Pollution Research 17 (2009) 798-806.
[3] J. Wang, Y. Liu, F. Jiao, F. Lao, W. Li, Y. Gu, Y. Li, C. Ge, G. Zhou, B. Li, Toxicology 254 (2008) 82-90.
[4] G. Bystrzejewska-Piotrowska, J. Golimowski, P.L. Urban, Waste Management 29 (2009) 2587-2595.
[5] M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kahru, Chemosphere 71 (2008) 1308-1316.
[6] A. Kathiravan, M. Asha Jhonsi, R. Renganathan, Journal of Luminescence (2011).
[7] J. Wang, J. Wu, Z.H. Zhang, X.D. Zhang, L. Wang, L. Xu, B.D. Guo, H. Li, J. Tong, Chinese Chemical Letters 16 (2005) 1105.
[8] Z. Xu, S.L. Wang, H.W. Gao, Journal of hazardous materials 180 (2010) 375-383.
[9] M.T. Zhu, W.Y. Feng, B. Wang, T.C. Wang, Y.Q. Gu, M. Wang, Y. Wang, H. Ouyang, Y.L. Zhao, Z.F. Chai, Toxicology 247 (2008) 102-111.
[10] R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi, H. Hidaka, J. Knowland, FEBS letters 418 (1997) 87-90.
[1] K. Donaldson, V. Stone, A. Seaton, W. MacNee, Environmental health perspectives 109 (2001) 523.
[2]  J.J. Wang, B.J.S. Sanderson, H. Wang, Mutation Research/Genetic Toxicology and Environmental Mutagenesis 628 (2007) 99-106.
[3]  X. Wu, G. Narsimhan, Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics 1784 (2008) 1694-1701.
[14] F. F. Chen, Y.N. Tang, S.L. Wang, H.W. Gao, Amino acids 36 (2009) 399-407.
[15] G. Merlini, V. Bellotti, Clinica chimica acta 357 (2005) 168-172.
[16] J. Vörös, Biophysical journal 87 (2004) 553-561.
[17] T. Kopac, K. Bozgeyik, J. Yener, Colloids and Surfaces A: Physicochemical and Engineering Aspects 322 (2008) 19-28.
[18] C. Yongli, Z. Xiufang, G. Yandao, Z. Nanming, Z. Tingying, S. Xinqi, Journal of colloid and interface science 214 (1999) 38-45.
[19] F. Y. Oliva, L.B. Avalle, O.R. Camara, C.P. De Pauli, Journal of colloid and interface science 261 (2003) 299-311.
[20] H. S. Liu, Y.C. Wang, W.Y. Chen, Colloids and Surfaces B: Biointerfaces 5 (1995) 25-34.
[21] J. R. Lakowicz, G. Weber, Biochemistry 12 (1973) 4171-4179.
[22] P. L. Privalov, Stability of proteins, Academic Press, 1979.
[23] B. Shareghi, M. Arabi, THERMAL Iranian Journal of Science & Technology 32 (2008).
[24] R. R. Zhu, S.L. Wang, R. Zhang, X.Y. Sun, S.D. Yao, Chinese Journal of Chemistry 25 (2007) 958-961.
[25] Y. Goto, H. Yagi, K. Yamaguchi, E. Chatani, T. Ban, Current Pharmaceutical Design 14 (2008) 3205-3218.
[26] Z. Wu, B. Zhang, B. Yan, International journal of molecular sciences 10 (2009) 4198-4209.