Synthesis of CuFeS2 Nanoparticles by One-pot Facile Method

Document Type : Research Paper

Authors

1 School of Metallurgy and Material Engineering, Iran University of Science and Technology, Tehran, Iran

2 Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg, Mainz, Germany

Abstract

Monodisperse copper-iron-sulfide (CuFeS2) nanoparticles as the infrared light absorbing material (chalcopyrite, 0.65 eV), were synthesized based on facile, one step heating up method, by dissolving of CuCl, FeCl3 and SC(NH2)2 as precursors in oleylamine (OLA) alone or in combination with oleic acid (OA) and 1-octadecene (ODE) as solvent. The phase, size, morphology, and size distribution were controlled by the reaction conditions and temperature. The CuFeS2 nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectrum and ultraviolet-visible-near infrared. The three main absorbance region was observed in the ultraviolet, visible and infrared as a hybridization of Fe 3d-S 3p among the valence band (Cu 3d-S 3p) and conduction band (Cu 4s-Fe 4s). Well controlled CuFeS2 triangular pyramidal along with semi-hexagonal and hexagonal shape (~ 20-25 nm) was obtained by using OLA or a mixture of OLA along with OA and ODE, respectively, with 210 °C heating up and 4 h annealing time.

Keywords


1. Y. Mikhlina, Y. Tomashevicha, V. Tausonb, D. Vyalikhc, S. Molodtsovc, R. Szargan, A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J. Electron. Spectrosc. Relat. Phenom. 2005; 142 (1), 83-88.
2. Y. Vahidshad, M. N. Tahir, A. Iiraji-Zad, S. M. Mirkazemi, R. Ghazemzadeh, Hannah Huesmann, W. Tremel, Structural and optical study of Ga3+ substitution in CuInS2 nanoparticles synthesized by a one-pot facile method. J. Phys. Chem. C. 2014; 118 (42), 24670-24679.
3. J. Hu, Qi. Lu, B. Deng, K. Tang, Y. Qian, Y. Li, G. Zhou, X. Liu, A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorg. Chem. Commun. 1999; 2 (12), 569-571.
4. Y. Vahidshad, M. N. Tahir, A. Iiraji-Zad, S. M. Mirkazemi, R. Ghazemzadeh, W. Tremel, Structural and Optical Properties of Fe and Zn Substitution in CuInS2 Nanoparticles Synthesized by a One-Pot Facile Method. J. Mater. Chem. C. 2015; 3 (4), 889-898.
5. E. J. Silvester, T. W. Healy, F. Grieser, B. A. Sexton, Hydrothermal preparation and characterization of optically transparent colloidal chalcopyrite (CuFeS2). Langmuir. 1991; 7 (1), 19-22.
6. Y. Vahidshad, A. Iraji-Zad, R. Ghasemzadeh, S. M. Mirkazemi, A. Masoud, Structural and optical characterization of nanocrystalline CuAlS2 chalcopyrite synthesized by polyol method in autoclave. Int. J. Mod. Phys. B. 2012; 26 (31), 1250179 (1-12).
7. D. L. Young, J. Abushama, R. Noufi, X. Li, J. Keane, T. A. Gessert, J. S. Ward, M. Contreras, M. Symko-Davies, T. J. Coutts, Photovoltaic Specialists Conference.  A new thin-film CuGaSe2/Cu(In,Ga)Se2 bifacial, tandem solar cell with both junctions formed simultaneously. 29th IEEE PV Specialists Conference-New Orleans, Louisiana May 20-24. 2002; 608-611.
8. J. Song, S. S. Li, C. H. Huang, T. J. Anderson, O. D. Crisalle,
Modeling and simulation of a CuGaSe2/Cu(In1-xGax)Se2 tandem solar cell. 3rd World Conference on Photovoltaic Energy Conversion. Osaka, 1, May 18-18. 2003; 555-558.
9. W. Ding, X. Wang, H. Peng, L. Hu, Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery. Mater. Chem. Phys. 2013; 137 (3), 872-876.
10. N. Tsujii, T. Mori, Y. Isoda, Phase stability and thermoelectric properties of CuFeS2-based magnetic semiconductor. J. Electron. Mater. 2014; 43 (6), 2371-2375.
11. S. Kang, B. S. Kwak, M. Park, K. M. Jeong, S.-M. Park, M. Kang, Synthesis of Core@shell structured CuFeS2@TiO2 magnetic nanomaterial and Its application for hydrogen production by methanol aqueous solution photosplitting. Bull. Korean Chem. Soc. 2014; 35 (9), 2813-2817.
12. P. Kumar, S. Uma, R. Nagarajan, Precursor driven one pot synthesis of wurtzite and chalcopyrite CuFeS2. Chem. Commun. 2013; 49 (66), 7316-7318.
13. Y.-H. A. Wang, N. Bao, A. Gupta, Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals. Solid State Sci. 2010; 12 (3), 387-390.
14. Animesh Layek, Arka Dey, Joydeep Datta, Mrinmay Das, Partha pratim ray, Novel CuFeS2 pellet behaves like a portable signal transporting network: studies of immittance. RSC Adv. 2015; 5 (44), 34682-34689.
15. K.-T. Chen, C.-J. Chiang, D. Ray, Hydrothermal synthesis of chalcopyrite using an environmental friendly chelating agent. Mater. Lett. 2013; 98, 270-272.
16. S. D. Disale, S. S. Garje, A Convenient synthesis of nanocrystalline chalcopyrite, CuFeS2 using single-source precursors. Appl. Organometal. Chem. 2009; 23 (12), 492-497.
17. K. Sato, Y. Harada, M. Taguchi, S. Shin, A. Fujimori, Characterization of Fe 3d States in CuFeS2 by Resonant X-ray Emission Spectroscopy. Phys. Status Solidi A. 2009; 206 (5), 1096-1100.
18. L. Shi, C. Pei, Q. Li, Ordered arrays of shape tunable CuInS2 nanostructures, from nanotubes to Nano test tubes and nanowires. Nanoscale. 2010; 2 (10), 2126-2130.
19. D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, Y. Lu, Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 2008; 130 (17), 5620-5621.
20. B. Li, L. Huang, M. Zhong, Z. Wei, J. Li, Electrical and magnetic properties of FeS2 and CuFeS2 nanoplates. RSC Advances. 2015; 5 (11), 91103-91107.
21. T. P. Mernagh, A. G. Trudu, A laser Raman microprobe study of some geologically important sulphide minerals. Chem. Geol. 1993; 103 (1-4), 113-127.
22. J. Łażewski, H. Neumann, K. Parlinski, Ab initio characterization of magnetic CuFeS2. Phys. Rev. B. 2004; 70 (19), 195206 (1-7).
23. K. Aup-Ngoen, T. Thongtem, S. Thongtem, A. Phuruangrat, Cyclic microwave-assisted synthesis of CuFeS2 nanoparticles using biomolecules as sources of sulfur and complexing agent. Mater. Lett. 2013; 101, 9-12.
24. M. H. Valdés, M. Berruet, A. Goossens, M. Vázquez, Spray deposition of CuInS2 on electrodeposited ZnO for low-cost solar cells. Surf. Coat. Tech. 2010; 204 (24), 3995-4000.
25. G. Will, E. Hinze, A. Rahman, M. Abdelrahman, Crystal structure analysis and refinement of Digenite, Cu1.8S, in the temperature range 20 to 500°C under controlled sulfur partial pressure. Eur. J. Mineral. 2002; 14 (3), 591-598.
26. S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, Y. Cui, Phase Transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods. J. Am. Chem. Soc. 2009; 131 (13), 4962-4966.
27. T. Kuzuya, Y. Hamanaka, K. Itoh, T. Kino, K. Sumiyama, Y. Fukunaka, S. Hirai, Phase control and Its mechanism of CuInS2 nanoparticles. J. Colloid Interface Sci. 2012; 388 (1), 137-143.
28. M. B. Sigman, Jr., A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, B. A. Korgel, Solventless synthesis of monodisperse Cu2S nanorods, nanodisks. J. Am. Chem. Soc. 2003; 125 (51), 16050-16057.
29. B. Koo, R. N. Patel, B. A. Korgel, Wurtzite-chalcopyrite polytypism in CuInS2 nanodisks. Chem. Mater. 2009; 21 (9), 1962-1966.
30. J.-J. Wang, J.-S. Hu, Y.-G. Guo, L.i-J. Wan, Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic–inorganic hybrid photodetectors. NPG Asia Mater. 2012; 4 (8), 1-10.
31. S. Kumar, T. Nann, Shape control of II-VI semiconductor nanomaterials. Small. 2006; 2 (3), 316-329.
32. E. Witt, J. Kolny-Olesiak, Shape control of II-VI semiconductor nanomaterials. Chem. Eur. J. 2013; 19 (30), 9746-9753.
33. D. J. Vaughan, K. E. R. England, G. H. Kelsall, Q. Yin, Electrochemical oxidation of chalcopyrite (CuFeS2) and the related metal-enriched derivatives Cu4Fe5S8, Cu9Fe9S16, and Cu9Fe8S16. Am. Mineral. 1995; 80 (7-8), 725-731.
34. M. X. Wang, L. S. Wang, G. H. Yue, X. Wang, P. X. Yan, D. L. Peng, Single crystal of CuFeS2 nanowires synthesized through solventothermal process. Mater. Chem. Phys. 2009; 115 (1), 147-150.
35. D. F. Marrón, A. Martí and A. Luque, Thin-film intermediate band chalcopyrite solar cells. Thin Solid Films. 2009; 517 (7), 2452-2454.
36. Y. Mikhlin, Y. Tomashevich, V. Tauson, D. Vyalikhc, S. Molodtsov, R. Szargan, A comparative X-ray absorption near-Edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J. Electron Spectrosc. Relat. Phenom. 2005; 142 (1), 83-88.
37. T. Kambara, Optical properties of a magnetic semiconductor: chalcopyrite CuFeS. II. calculated Electronic structures of CuGaS2:Fe and CuFeS2. J. Phys. Soc. Jpn. 1974; 36 (6), 1625-1635.
38. J. A. Tossell, D. S. Urch, D. J. Vaughan and G. Wiech, The Electronic structure of CuFeS2, chalcopyrite, from X-ray emission and X-ray photoelectron spectroscopy and Xα calculations. J. Chern. Phys. 1982; 77 (1), 77-82.
39. C. Tablero and D. F. Marron, Analysis of the electronic structure of modified CuGaS2 with selected substitutional impurities: prospects for intermediate-band thin film solar cells based on Cu-containing chalcopyrites. J. Phys. Chem. C. 2010; 114 (6), 2756-2763.