Electrochemical Preparation and Characterization of Mn5O8 Nanostructures

Document Type : Research Paper


Materials and Nuclear Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran


Electrochemical synthesis followed by heat-treatment is a facile and easy method for preparation of nanostructured metal oxides. Herein we report nanostructured Mn5O8 prepared through pulse cathodic deposition followed by heat-treatment for the first time. For the preparation of Mn5O8 nanorods, pulse cathodic electrodeposition was first done from 0.005M Mn(NO3)2 at the current density of 5 mA cm-2 which yield Mn3O4 precursor. Then, heat-treatment of the deposited precursor was performed to obtain final Mn5O8 product. The structural and morphological properties of the prepared product were investigated by XRD, FT-IR, SEM and TEM techniques. The analysis results revealed that the prepared sample has pure Mn5O8 composition with rod morphology at nanoscale. Mechanism of deposit formation during pulse deposition was proposed and discussed. The formation of Mn5O8 nanorods via calcination of Mn3O4 precursor was also studied by thermogravimetric analysis. The results suggested that the cathodic electrodeposition-heat treatment method can be considered as simple and facile route for preparation of Mn5O8 nanorods.


1. Huang S., Wang Y., Wang Z., Zhao K., Shi X., Lai X., Zhang L., (2015), Structural, magnetic and magnetodielectric properties of the Mn3O4 thin films epitaxially grown on SrTiO3 (001) substrates. Solid State Commun. 212: 25-29.
2. Sadeghi M., Hosseini M.H., (2012), Preparation and application of MnO2 nanoparticles/zeolite AgY composite catalyst by confined space synthesis (CSS) method for the desulfurization and elimination of SP and OPP. JNS 2: 441-445.
3. Cai Z., Xu L., Yan M., Han C., He L., Hercule K.M., Niu C., Yuan Z., Xu W., Qu L., Zhao K., Mai L., (2015), Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 15: 738–744.
4. Z. Li, Y. Su, G. Yun, K. Shi, X. Lv, B. Yang, (2014), Binder free synthesis of MnO2 nanoplates/ graphene composites with enhanced supercapacitive properties. Solid State Commun. 192: 82-88.
5. Klingsberg C., Roy R., (1960), Solid-solid and solid-vapor reactions and a new phase in the system Mn-O. J. Am. Ceram. Soc. 43: 620–626.
6. Oswald H.R., Feitknecht W., Wampetich M.J., (1965), Crystal Data of Mn5O8 and Cd2Mn3O8. Nature 207: 72-72.
7. Oswald H.R., Wampetich M.J., (1967), Die Kristallstrukturen von Mn5O8 und Cd2Mn3O8. Helv. Chim. Acta 50: 2023–2034.
8. Prinz G.A., (1998), Magnetoelectronics. Science 282: 1660-1663.
9. Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., Von Molnar S., Roukes M.L., Chtchelkanova A.Y., Treger D.M., (2001), Spintronics: a spin-based electronics vision for the future. Science 294: 1488-1495.
10. Tian Z.R., Tong W., Wang J.Y., Duan N.G., Krishnan V.V., Sui S.L., (1997), Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts. Science 276: 926-930.
11. Gao T., Norby P., Krumeich F., Okamoto H., Nesper R., Fjellvag H., (2010), Synthesis and properties of layered-structured Mn5O8 nanorods J. Phys. Chem. C 114: 922–928.
12. Park Y.J., Doeff M.M., (2006), Synthesis and electrochemical characterization of M2Mn3O8 (M=Ca, Cu) compounds and derivatives. Solid State Ionics 177: 893–900.
13. Punnoose A., Magnone H., Seehra M.S., (2001), Synthesis and antiferromagnetism of Mn5O8 IEEE Transaction on Magnetics 37: 2150-2152.
14. Sugawara M., Ohno M., Matsuki K., (1991) Novel preparation method of manganese(II) manganese(IV) oxide (Mn2Mn3O8, Mn5O8) by citrate process. Chem. Lett. 1465–1468.
15. Yamamoto N., Kiyama M., Takada T., (1973), A new preparation method of Mn5O8. Jpn. J. Appl. Phys. 12 1827–1828.
16. Fritsch S., Sarrias J., Rousset A., Kulkarni G.U., (1998), Low-temperature oxidation of Mn3O4 hausmannite. Mater. Res. Bull. 33: 1185–1194.
17. Uddin I., Poddar P., Ahmad A., (2013), Extracellular biosynthesis of water dispersible, protein capped Mn5O8 nanoparticles using the fungus fusarium oxysporum and study of their magnetic behavior. J. Nanoeng. Nanomanufact. 3: 91–97.
18. Aghazadeh M., Barmi A.A.M., Gharailou D., Peyrovi M.H., Sabour B., (2013), Cobalt hydroxide ultra-fine nanoparticles with excellent energy storage ability. Appl. Surf. Sci. 283: 871-875.
19. Barani A., Aghazadeh M., Ganjali M.R., Sabour B., Barmi A.A.M., Dalvand S., (2014), Nanostructured nickel oxide ultrafine nanoparticles: synthesis, characterization, and supercapacitive behavior. Mater. Sci. Semiconduct. Process. 23 85-92.
20. Aghazadeh M., Barmi A.A.M., Hosseinifard M., (2012), Nanoparticulates Zr(OH)4 and ZrO2 prepared by low-temperature cathodic electrodeposition. Mater. Lett. 73: 28-31.
21. Aghazadeh M., Hosseinifard M., (2013), Electrochemical preparation of ZrO2 nanopowder: impact of the pulse current on the crystal structure, composition and morphology. Ceram. Int. 39: 4427-4435.
22. Aghazadeh M., Yousefi T., Ghaemi M., (2012), Electrochemical preparation and characterization of brain-like nanostructures of Y2O3. J. Rare Earths 30: 236-240
23. Aghazadeh M., Maragheh M.G., Ganjali M.R., Norouzi P., Faridbod F., (2016), Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance. Appl. Surf. Sci. 364: 141-147.
24. Aghazadeh M., Ahmadi R., Gharailou D., Ganjali M.R., Norouzi P., (2016), Electrochemical preparation and supercapacitive performance of α-MnO2 nanospheres with secondary wall-like structures. J. Mater. Sci.: Mater. Electron. DOI 10.1007/s10854-016-4882-x.
25. Davar F., Salavati-Niasari M., Mir N., Saberyan K., Monemzadeh M., Ahmadi E., (2010), Thermal decomposition route for synthesis of Mn3O4 nanoparticles in presence of a novel precursor. Polyhedron 29: 1747-1753.
26. Koza J.A., Schroen I.P., Willmering M.M., Switzer J.A., (2014), Electrochemical synthesis and nonvolatile resistance switching of Mn3O4 thin films. Chem. Mater. 26: 4425-4432.
27. Yousefi T., Nozad Golikand A., Mashhadizadeh M.H., Aghazadeh M., (2012), Hausmannite nanorods prepared by electrodeposition from nitrate medium via electrogeneration of base. J. Taiwan Inst. Chem. Eng. 43: 614-618.
28. Ishii M., Nakahira M., Yamanaka T., (1972), Infrared absorption spectra and cation distributions in (Mn, Fe)3O4. Solid State Commun. 11: 209–212.
29. Wang W.Z., Xu C.K., Wang G.H., Liu Y.K., Zheng C.L., (2002), Preparation of smooth single-crystal Mn3O4 nanowires. Adv. Mater. 14: 837-840.
30. Gupta N., Verma A., Kashyap S.C., Dube D.C., (2007), Microstructural, dielectric and magnetic behavior of spindeposited nanocrystalline nickel-zinc ferrite thin films for microwave applications. J. Magn. Magnet. Mater. 308: 137-142.
31. Azzoni C.B., Mozzati M.C., Galinetto P., Paleari A., Massarotti V., Capsoni D., Bini M., (1999), Thermal stability and structural transition of metastable Mn5O8. Solid State. Commun. 112: 375–378.
32. Khosrow-pour F., Aghazadeh M., Arhami B., (2013), Facile synthesis of vertically aligned one-dimensional (1D) La(OH)3 and La2O3 nanorods by pulse current deposition. J. Electrochem. Soc. 160: D150-D155.
33. Aghazadeh M., Ghaemi M., Golikand A.N., Ahmadi A., (2011), Porous network of Y2O3 nanorods prepared by electrogeneration of base in chloride medium. Mater. Lett. 65: 2545-2548.