Examination of effects of multi-walled carbon nanotubes on rheological behavior of engine oil (10W40)

Document Type : Research Paper

Authors

1 Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran

2 Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

3 FluidMechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, KingMongkut’s University of Technology Thonburi, Bangmod, Bangkok , Thailand

Abstract

In this study, effects of multi walled carbon nanotubes and temperature on rheological behavior of engine oil (10W40) have been examined. For this purpose, the experiments were carried out in the temperature range of 5-55°C for several suspensions with solid volume fractions of 0.025%, 0.05%, 0.1%, 0.25%, 0.5% and 0.75%. The viscosity of all samples was measured in the shear rate range of 666s-1 to 13333 s-1 at all temperatures considered. The viscosity measurements at different shear rates revealed that all nanofluid samples showed non-Newtonian behavior. The results also revealed that for an increase in the solid volume fraction from 0 to 0.75%, the viscosity increases to 2.5 times. The consistency and the power law index were attained by curve-fitting method for all samples and temperatures. Furthermore, the curve-fitting results revealed that the consistency index and apparent viscosity of nanofluid increases with augmenting the solid volume fraction and diminishes with growing temperature.

Keywords


1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Dev. Appl. Non Newton Flows. 1995; 231: 99–105.
2. M.S. Mojarrad, A. Keshavarz, M. Ziabasharhagh, M.M. Raznahan, Experimental investigation on heat transfer enhancement of alumina/water and alumina/water–ethylene glycol nanofluids in thermally developing laminar flow, Experimental Thermal and Fluid Science. 2014; 53: 111-118.
3. M. Hemmat Esfe, M. Afrand, A. Karimipour, W.-M. Yan, N. Sina, An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol, International Communications in Heat and Mass Transfer. 2015; 67: 173-175.
4. M. Hemmat Esfe, H. Rostamian, M. Afrand, A. Karimipour, M. Hassani, Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation, International Communications in Heat and Mass Transfer. 2015; 68: 98-103.
5. M. Hemmat Esfe, A. Naderi, M. Akbari, M. Afrand, A. Karimipour, Evaluation of Thermal Conductivity of COOH-functionalized MWCNTs/water via Temperature and Solid Volume Fraction by using Experimental data and ANN methods, J.Therm. Anal. Calorim. 2015; 121: 1273–1278.
6. M. Hemmat Esfe, S. Saedodin, N. Sina, M. Afrand, S. Rostami, Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. 2015; 68: 50-57.
7. M. Hemmat Esfe, M. Afrand,W.M. Yan, M. Akbari, Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3–water nanofluids using experimental data, Int. Commun. Heat Mass Transfer. 2015; 66: 246-249.
8. M. Hemmat Esfe, M. Afrand, S.Wongwises, A. Naderi, A. Asadi, S. Rostami, M. Akbari, Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data, Int. Commun. Heat Mass Transfer. 2015; 67: 46-50.
9. M. Hemmat Esfe, S. Saedodin, M. Akbari, A. Karimipour, M. Afrand, S. Wongwises, M.R. Safaei, M. Dahari, Experimental investigation and development of new correlations for thermal conductivity of CuO/EG–water nanofluid, International Communications in Heat and Mass Transfer. 2015; 65: 47-51.
10. L.S. Sundar, M.K. Singh, A.C.M. Sousa, Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid, International Communications in Heat and Mass Transfer. 2013; 49: 17-24.
11. C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, H.A. Mintsa, Temperature and particle-size dependent viscosity data for water based nanofluids -hysteresis phenomenon, Int. J. Heat Fluid Fl. 2007; 28: 1492–1506.
12. W. Duangthongsuk, S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Exp. Therm. Fluid Sci. 2009; 33: 706–714.
13. M. Hemmat Esfe, S. Saedodin, O. Mahian, S. Wongwises, Thermal Conductivity of Al2O3/ Water Nanofluids: Measurement, Correlation, Sensitivity Analysis, and Comparisons with Literature Reports, J. Therm. Anal. Calorim. 2014; 117(2): 3771-3776.
14. U. Rea, T. McKrell, L. Hu, J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids, Int. J. Heat Mass Tran. 2009; 52: 2042–2048.
15. M. Kole, T.K. Dey, Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids, Int. J. Therm. Sci. 2011; 50: 1741-1747.
16. S. Bobbo, L. Fedele, A. Benetti, L. Colla, M. Fabrizio, C. Pagura, S.Barison, Viscosity of water based SWCNH and TiO2 nanofluids, Exp. Therm. Fluid Sci. 2012; 36: 65–71.
17. T. Yiamsawas, O. Mahian, A.S. Dalkilic, S. Kaewnai, S. Wongwises, Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications, Appl. Energy. 2013; 111: 40–45.
18. M. Hemmat Esfe, S. Saedodin, M. Mahmoodi, Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow, Exp. Therm. Fluid Sci. 2014; 52: 68–78.
19. M. Hemmat Esfe, S. Saedodin, An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions, Exp. Therm. Fluid Sci. 2014; 55: 1–5.
20. M. Hemmat Esfe, S. Saedodin, O. Mahian, S. Wongwises, Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids, Int. Commun. Heat Mass. 2014; 58: 176–183.
21. M. Hemmat Esfe, S. Saedodin, O. Mahian, S. Wongwises Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations, Int. J. Heat Mass Tran. 2014; 73: 186–194.
22. G.R. Vakili-Nezhaad, A. Dorany, Investigation of the effect of multiwalled carbon nanotubes on the viscosity index of lube oil cuts, Chem. Eng. Commun. 2009; 196: 997–1007.
23. L. Chen, H. Xie, W. Yu, Y. Li, Rheological behaviors of nanofluids containing multi-walled carbon nanotube, J. Disper. Sci. Technol. 2011; 32: 550–554.
24. M.H. Vasheghani, E. Marzbanrad, C. Zamani, M. Aminy, B. Raissi, T. Ebadzadeh, H. Barzegar-Bafrooei, Effect of Al2O3 phases on the enhancement of thermal conductivity and viscosity of nanofluids in engine oil, Heat Mass Transfer. 2011: 47: 1401–1405.
25. E. Ettefaghi, H. Ahmadi, A. Rashidi, A. Nouralishahi, S.S Mohtasebi, Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant, Int Commun. Heat Mass. 2013; 46: 142-147.
26. D.P. Kulkarni, D.K. Das, G.A. Chukwu, Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid), J. Nanosci. Nanotechnol. 2006; 6 (4): 1150–1154.
27. M. Kole, T.K. Dey, Viscosity of alumina nanoparticles dispersed in car engine coolant, Exp. Therm. Fluid Sci. 2010; 34 (6): 677–683.
28. H. Chen, Y. Ding, A. Lapkin, X. Fan, Rheological behaviour of ethylene glycoltitanate nanotube nanofluids, J. Nanopart. Res. 2009; 11 (6): 1513–1520.
29. H. Chen, Y. Ding, A. Lapkin, Rheological behaviour of nanofluids containing tube/ rod-like nanoparticles, Powder Technol. 2009; 194 (1–2): 132–141.
30. D. Cabaleiro, M.J. Pastoriza-Gallego, C. Gracia-Fernández, M. M Piñeiro, L. Lugo, Rheological and volumetric properties of TiO2-ethylene glycol nanofluids, Nanoscale Res. Lett. 2013; 8: 286-299.
31. T.X. Phuoc, M. Massoudi, R.H. Chen, Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan, Int. J. Therm. Sci. 2011; 50: 12–8.