Fabrication of TiO2 Hollow Spheres and its Application in Modification of Carbon Paste Electrode For Simultaneous Determination of Dopamine and Piroxicam in the Presence of Ascorbic acid

Document Type : Research Paper


1 Department of Chemistry, Faculty of Science, Arak University, Arak, Iran

2 Department of Physics, Faculty of Science, Arak University, Arak, Iran.


In this work we report preparation TiO2 hollow spheres and its application as an electrochemical sensor. Therefore the novel carbon paste electrode modified with TiO2 hollow spheres (TOHS), multi-walled carbon nanotubes (MWCNTs) and poly-glutamic acid (PGA) film (PGA/TOHS/MWCNTs/CPE) was used for simultaneous determination of dopamine (DA) and piroxicam (PRX) in the presence of ascorbic acid (AA). The electro-oxidation of dopamine(DA) and piroxicam (PRX) has been investigated by application of the modified electrode using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CA) methods. The modified electrode accelerates the electron transfer reactions of DA and PRX. In addition it shows no significant interference of AA as the electroactive coexistent compounds with DA and PRX in biological systems. The fabricated sensor revealed some advantages such as excellent selectivity, good stability and high sensitivity toward DA and PRX determination. Under the optimum conditions the electrode provides a linear response versus DA and PRX concentrations in the range of 0.3–60 and 0.4–80 µM and with a detection limit of 0.2µM and 0.3µM(S/N=3) respectively using the DPV method. The modified electrode was used for determination of DA and PRX in human urine with satisfactory results.


1. Nowak RJ, Kutner W, Mark HB, MacDiarmid AG. Behavior of polymeric sulfur nitride,(SN)x, electrodes in aqueous media. J Electrochem Soc. 1978;125(2):232-40.
2. Pickup P, Kutner W, Leidner C, Murray RW. Redox conduction in single and bilayer films of redox polymer. J Am Chem Soc. 1984;106(7):1991-8.
3. Krinichnaya EP, Moravsky AP, Efimov O, Sobczak JW, Winkler K, Kutner W, et al. Mechanistic studies of the electrochemical polymerization of C60 in the presence of dioxygen or C 60 O. J Mater Chem. 2005;15(14):1468-76.
4. Liu X, Luo L, Ding Y, Ye D. Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan. Bioelectrochemistry. 2011;82(1):38-45.
5. Zhu Y-z, Chen H-b, Wang Y-p, Li Z-h, Cao Y-l, Chi Y-b. Mesoscopic photonic crystals made of TiO2 hollow spheres connected by cylindrical tubes. Chem Lett. 2006;35(7):756-7.
6. Fujiwara M, Shiokawa K, Hayashi K, Morigaki K, Nakahara Y. Direct encapsulation of BSA and DNA into silica microcapsules (hollow spheres). J Biomed Mater Res A. 2007;81(1):103-12.
7. Salgueiriño‐Maceira V, Spasova M, Farle M. Water‐Stable, Magnetic Silica–Cobalt/Cobalt Oxide–Silica Multishell Submicrometer Spheres. Adv Funct Mater. 2005;15(6):1036-40.
8. Xia Y, Mokaya R. Hollow spheres of crystalline porous metal oxides: A generalized synthesis route via nanocasting with mesoporous carbon hollow shells. J Mater Chem. 2005;15(30):3126-31.
9. Syoufian A, Satriya OH, Nakashima K. Photocatalytic activity of titania hollow spheres: Photodecomposition of methylene blue as a target molecule. Catal Commun. 2007;8(5):755-9.
10. Liu Z, Sun DD, Guo P, Leckie JO. One‐Step Fabrication and High Photocatalytic Activity of Porous TiO2 Hollow Aggregates by Using a Low‐Temperature Hydrothermal Method Without Templates. Chemistry-A European Journal. 2007;13(6):1851-5.
11. Yu J, Zhang J. A simple template-free approach to TiO2 hollow spheres with enhanced photocatalytic activity. Dalton Transactions. 2010;39(25):5860-7.
12. Davis JJ, Coles RJ, Allen H, Hill O. Protein electrochemistry at carbon nanotube electrodes. J Electroanal Chem. 1997;440(1):279-82.
13. Luo H, Shi Z, Li N, Gu Z, Zhuang Q. Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem. 2001;73(5):915-20.
14. Nugent J, Santhanam K, Rubio A, Ajayan P. Fast electron transfer kinetics on multiwalled carbon nanotube microbundle electrodes. Nano Lett. 2001;1(2):87-91.
15. Tans SJ, Verschueren AR, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1998;393(6680):49-52.
16. Gooding JJ. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim Acta. 2005;50(15):3049-60.
17. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, et al. Nanotube molecular wires as chemical sensors. Science. 2000;287(5453):622-5.
18. Babaei A, Afrasiabi M, Mirzakhani S, Taheri AR. A sensitive determination of acetaminophen in pharmaceutical preparations and biological samples using multi-walled carbon nanotube modified glassy carbon electrode. J Braz Chem Soc. 2011;22(2):344-51.
19. Adams RN. Probing brain chemistry with electroanalytical techniques. Anal Chem. 1976;48(14):1126A-38A.
20. Whiting M. Simultaneous measurement of urinary metanephrines and catecholamines by liquid chromatography with tandem mass spectrometric detection. Ann Clin Biochem. 2009;46(2):129-36.
21. Wu H-P, Cheng T-L, Tseng W-L. Phosphate-modified TiO2 nanoparticles for selective detection of dopamine, levodopa, adrenaline, and catechol based on fluorescence quenching. Langmuir. 2007;23(14):7880-5.
22. Hard D, Bhatnagar R, Molina J, Anderson L. Secretion of dopamine and norepinephrine in hypophyseal portal blood and prolactin in peripheral blood of Holstein cattle. Domest Anim Endocrinol. 2001;20(2):89-100.
23. Jung MC, Shi G, Borland L, Michael AC, Weber SG. Simultaneous determination of biogenic monoamines in rat brain dialysates using capillary high-performance liquid chromatography with photoluminescence following electron transfer. Anal Chem. 2006;78(6):1755-60.
24. Dayton M, Geier G, Wightman R. Electrochemical measurement of release of dopamine and 5-hydroxytryptamine from synaptosomes. Life Sci. 1979;24(10):917-24.
25. Yogeswaran U, Chen SM. Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly (neutral red) composite films. Electrochim Acta. 2007;52(19):5985-96.
26. Wightman R, Bright CE, Caviness J. Direct measurement of the effect of potassium, calcium, veratridine, and and amphetamine on the rate of release of dopamine from superfused brain tissue. Life Sci. 1981;28(11):1279-86.
27. Zimmerman JB, Wightman RM. Simultaneous electrochemical measurements of oxygen and dopamine in vivo. Anal Chem. 1991;63(1):24-8.
28. Brunton L, Lazo J, Parker K. Goodman & Gilman’s The Pharmacological Basis of Therapeutics: McGraw-Hill Education; 2005.
29. Twomey TM, Bartolucci SR, Hobbs DC. Analysis of piroxicam in plasma by high-performance liquid chromatography. J Chrom B: Biomed Sci Appl. 1980;183(1):104-8.
30. Dixon J, Lowe J, Galloway D. Rapid method for the determination of either piroxicam or tenoxicam in plasma using high-performance liquid chromatography. J Chrom B: Biomed Sci Appl. 1984;310:455-9.
31. Heizmann P, Körner J, Zinapold K. Determination of tenoxicam in human plasma by high-performance liquid chromatography. J Chrom B: Biomed Sci Appl. 1986;374:95-102.
32. Riedel K-D, Laufen H. High-performance thin-layer chromatographic assay for the routine determination of piroxicam in plasma, urine and tissue. J Chrom B: Biomed Sci Appl. 1983;276:243-8.
33. Shin S-C, Cho C-W. Physicochemical characterizations of piroxicam-poloxamer solid dispersion. Pharm Dev Technol. 1997;2(4):403-7.
34. Samy E, Safwat S. In vitro release of anti-inflammatory drugs with β-cyclodextrin from hydrophilic gel bases. STP pharma sciences. 1994;4(6):458-65.
35. Escandar GM. Spectrofluorimetric determination of piroxicam in the presence and absence of β-cyclodextrin. Analyst. 1999;124(4):587-91.
36. Puthli S, Vavia P. Stability indicating HPTLC determination of piroxicam. J Pharm Biomed Anal. 2000;22(4):673-7.
37. Fillet M, Bechet I, Piette V, Crommen J. Separation of nonsteroidal anti-inflammatory drugs by capillary electrophoresis using nonaqueous electrolytes. Electrophoresis. 1999;20(9).
38. Avgerinos A, Axarlis S, Dragatsis J, Karidas T, Malamataris S. Extractionless high-performance liquid chromatographic method for the simultaneous determination of piroxicam and 5′-hydroxypiroxicam in human plasma and urine. J Chrom B: Biomed Sci Appl. 1995;673(1):142-6.
39. Milligan PA. Determination of piroxicam and its major metabolites in the plasma, urine and bile of humans by high-performance liquid chromatography. J Chrom B: Biomed Sci Appl. 1992;576(1):121-8.
40. Cerretani D, Micheli L, Fiaschi A, Giorgi G. Rapid and sensitive determination of piroxicam in rat plasma, muscle and skin by high-performance liquid chromatography. J Chrom B: Biomed Sci Appl. 1993;614(1):103-8.
41. Lima MdMS, Reksidler ÂB, Vital M. Cyclooxygenases inhibitors indomethacin and piroxicam produced dual effects on dopamine-related behaviors in rats. Health and Environment Journal. 2009;9(2):24-33.
42. Sevilla M, Fuertes AB. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon. 2009;47(9):2281-9.
43. Marandi M, Feshki S, Naeimi Sani Sabet M, Anajafi Z, Taghavinia N. Synthesis of TiO2 hollow spheres using titanium tetraisopropoxide: fabrication of high efficiency dye sensitized solar cells with photoanodes of different nanocrystalline TiO2 sub-layers. RSC Advances. 2014;4(101):58064-76.
44. Tudorachi N, Chiriac AP. TGA/FTIR/MS study on thermal decomposition of poly (succinimide) and sodium poly (aspartate). Polym Test. 2011;30(4):397-407.
45. Radi A, El Ries M, El-Anwar F, El-Sherif Z. Electrochemical oxidation of meloxicam and its determination in tablet dosage form. Anal Lett. 2001;34(5):739-48.
46. Babaei A, Sohrabi M, Afrasiabi M. A sensitive simultaneous determination of epinephrine and piroxicam using a glassy carbon electrode modified with a nickel hydroxide nanoparticles/multiwalled carbon nanotubes composite. Electroanalysis. 2012;24(12):2387-94.
47. Tsai RS, Carrupt PA, Tayar NE, Giroud Y, Andrade P, Testa B, et al. Physicochemical and Structural Properties of Non‐Steroidal Anti‐inflammatory Oxicams. Helv Chim Acta. 1993;76(2):842-54.
48. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem. 1979;101(1):19-28.
49. Wu Y, Ji X, Hu S. Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin. Bioelectrochemistry. 2004;64(1):91-7.
50. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications: Wiley; 2000.