Preparation, Structure and Selected Catalytic Properties of La2CuO4 Nano Mixed Metal Oxides

Document Type : Research Paper


Department of Chemistry, Zahedan Branch, Islamic Azad University, Zahedan, Iran


The perovskite-structured La2CuO4 nanoparticles have been synthesized via an ultrasonic-assisted co-precipitation route using octanoic acid as organic surfactant, and the phase composition, morphology, lattice parameters and size of nanoparticles are characterized through Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and Transmission electron microscopy. Magnetic measurements are carried out by a vibrating sample magnetometer on the resultant powders at room temperature. Vibrating sample magnetometer shows nanoparticles exhibit ferromagnetic behavior. The synthesized perovskite yields comparatively pure crystalline phase of La2CuO4 nanoparticles. These nanoparticles are used as an efficient and effective catalyst for the oxidation of aldehydes to corresponding carboxylic acids, and this oxidation protocol works well for various aldehydes. Also the La2CuO4 nanoparticles can be recycled for several times without obvious loss of activity. The results show the utilization of these nano catalysts have several advantages, viz. high yields, clean reaction, short reaction times and recyclability of the catalyst.


1. Tejuca LG, Fierro JLG, Tascon JMD. Structure and reactivity of perovskite-type oxides. Adv. Catal.1989; 36: 237–328.
2. Zhu YF, Tan RQ, Yi T, Gao S, Yan CH, Cao LL. Preparation of nanosized La2CuO4 perovskite oxide using an amorphous heteronuclear complex as a precursor at low-temperature. J ALLOY COM, 2000; 311(1): 16-21.
3. Tabata K, Misono M. Elimination of Pollutant Gases-Oxidation of CO, Reduction and Decomposition of NO. Catal. Today. 1990; 8(2): 249-261.
4. Michel CR, Casafi-Pastor N. Electro- chemical oxygen intercalation in La2CuO4 prepared by nitrates method: Microstructural effects. Phys C Supercond. 2000; 341-348(3): 1977-1978.
5. Gao LZ, Wang XL, Chua HT, Kawi S. Growth of La2CuO4 nanofibers under a mild condition by using single walled carbon nanotubes as templates. J Solid State Chem. 2006; 179 (7): 2036-2040.
6. Bednorz JG, Muller KA. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B. 1986; 64(2):189-193.
7. Bednorz JG, Muller KA. Earlier and Recent Aspects of Superconductivity. Berlin: Springer Berlag; 1990.
8. Lee KH, Hoffmann R. Oxygen interstitials in superconducting La2CuO4: their valence state and role. J. Phys. Chem. A. 2006; 110(2): 609-617.
9. Park ST, Kang W, Kim HT,Yun SJ. Preparation of c-Axis Oriented La2CuO4 Thin Films on the Si Substrate by Pulsed Laser Deposition.Bull. Korean Chem. Soc. 2008; 29(3): 685-688.
10. Jorgensen JD, Dabrowski B,Pei S, Hinks DG, Soderholm L, Morosin B, Schirber JE, Venturini EL, Ginley DS. Superconducting phase of La2CuO4: A superconducting composition resulting from phase separation. Phys. Rew. B.1988; 38(7): 11337-11345.
11. EnhessariM, Shaterian M, Esfahani M J, Motaharian MN. Synthesis, characterization and optical band gap of La2CuO4 nanoparticles. Materials Science in Semiconductor Processing.2013; 16 (6):1517–1520.
12. Gou L, Murphy CJ. Rod-like Cu/La/O nanoparticles as a catalyst for phenol hydroxyl -lation. Chem. Commun. 2005; 5907-5909.
13. Yang J, Tang W, Liu X, Chao C, Liu J. Bacterial cellulose-assisted hydrothermal synthesis and catalytic performance of La2CuO4 nanofiber for methanol steam reforming. International Journal of Hydrogen Energy. 2013; 38(25): 10813–10818.
14. Zhang GQ, Lu XL, Qu JF, Wang W, Li G, Li XG. Solution Phase Synthesis of Superconducting La2CuO4 Microspheres. Materials Science Forum.2007; 546-549: 2071-2074.
15. Lees ST, Gameson I, Jones MO, Edwards PP, Slaski M. Synthesis, Structure, and Magnetic Characterization of Pulsed Laser-Ablated Superconducting La2CuO4Fx Thin Films. Chem. Mater. 1998, 10 (10), 3146–315
16. Peter SD, Garbowski E, Guilhaume N, Perrichon V, Primet M. Catalytic properties of La2CuO4 in the CO+NO reaction. Catalysis Letters. 1998; 54 (1-2); 79–84.
17. Dunn PJ. The importance of Green Chemistry in Process Research and. Development. Chem. Soc. Rev. 2012; 41(4): 1452–1461.
18. (a) Backvall JE. Modern Oxidation Methods. Wiley-VCH Verlag GmbH & Co. Kga A: Weinheim; 2004. (b) Carey FA, Sundberg RJ. Advanced Organic Chemistry Part B: Springer; 2007.
19. Polshettiwar V, Baruwati B, Varma RS. Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem. 2009; 11(1): 127–131.
20. Zeng T, Chen WW, Cirtiu CM, Moores A, Song G, Li CJ. Fe3O4 Nanoparticles: A Robust and Magnetically Recoverable Catalyst for Three-Component Coupling of Aldehyde, Alkyne and Amine Green Chem. 2010; 12(4): 570–573.
21. Lim CW, Lee IS. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today. 2010; 5(5): 412–434.
22. Nair V, Varghese V, Paul RR, Jose A, Sinu CR, Menon RS. NHC Catalyzed Transformation of Aromatic Aldehydes to Acids by Carbon Dioxide: An Unexpected ReactionOrg. Lett. 2010; 12(11): 2653–2655.
23. Kumar VKR, Krishnakumar S, Gopidas KR. Synthesis, Characterization and Catalytic Applications of Palladium Nanoparticle-Cored Dendrimers Stabilized by Metal–Carbon Bonds. Eur. J. Org. Chem. 2012; (18): 3447-3458.
24. Cui LQ, Liu K, Zhang C. Effective oxidation of benzylic and alkane C–H bonds catalyzed by sodium o-iodobenzenesulfonate with Oxone as a terminal oxidant under phase-transfer conditions. Org. Biomol. Chem. 2011; 9(7): 2258–2265.
25. Dobele M, Vanderheiden S, Jung N, Brase S. Synthesis of Aryl Fluorides on a Solid Support and in Solution by Utilizing a Fluorinated Solven. Angew. Chem., Int. Ed. 2010; 49(34): 5986–5988.
26. Leggio A, DeMarco R, Perri F, Spinella M, Liguori, A. Unusual Reactivity of Dimethylsulfoxonium Methylide with Esters. Eur. J. Org. Chem. 2012; (1):114–118.
27. Fujihara T, Xu T, Semba K, Terao J, Tsuji Y. Copper-Catalyzed Hydrocarboxylation of Alkynes Using Carbon Dioxide and Hydrosilanes. Angew. Chem., Int. Ed. 2011; 50(2): 523–527.
28. Chiang PC, Bode JW. On the Role of CO2 in NHC-Catalyzed Oxidation of Aldehydes. Org. Lett. 2011; 13(9): 2422–2425.
29. Qiu JC, Pradhan PP, Blanck NB, Bobbitt JM, Bailey WF. Selective Oxoammonium Salt Oxidations of Alcohols to Aldehydes and Aldehydes to Carboxylic Acids. Org. Lett. 2012; 14(1): 350–353.
30. Sobhani A, Salavati-Niasari M, Sobhani M, Synthesis, characterization and optical properties of mercury sulfides and zinc sulfides using single-source precursor. Materials Science in Semiconductor Processing.2013; 16 (2): 410–417.