Fabrication and Evaluation of Pt/M (M= Co, Fe) Chitosan Supported Catalysts for Methanol Electrooxidation: Application in Direct Alcohol Fuel Cell

Document Type : Research Paper


1 Esfarayen University of Technology, Esfarayen, North Khorasan, Iran

2 Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran

3 Department of Chemistry, Zahedan Branch, Islamic Azad University, Zahedan, Iran



In this work, Pt, Fe and Co nanoparticles were prepared by chemical reduction of the metal salts in chitosan as the support. NaBH4 was used as the reducing agent Pt-Fe, Pt-Co and Pt-Fe-Co-chitosan nanocomposites were synthesized and characterized by UV–Vis spectra and Transmission electron microscopy images. GC/Pt-chitosan, GC/Pt-Co-chitosan, GC/Pt-Fe-chitosan and GC/Pt-Co-Fe-chitosan electrodes were prepared. The performances of these electrodes for methanol electrooxidation were investigated through cyclic voltammetric and chronoamperometric curves. The effect of some experimental factors such as the amounts of Fe and Co nanoparticles dispersed in chitosan, methanol concentration and scan rate were studied and the optimum conditions were determined. The effect of temperature was also investigated and the activation energies were calculated. The performance of Pt-Fe-Co-chitosan nanocomposites was determined in a direct methanol fuel cell in different conditions. The electrochemical and fuel cell measurements showed that Pt-Fe-Co-chitosan nanocatalyst has the best activity for electrooxidation of methanol among all different compositions electrodes.


1. Li W, Zhou W, Li H, Zhou Z, Zhou B, Sun G, Xin Q. Nano-stuctured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim. Acta. 2004; 49 (7): 1045-1055.
2. Ma X, Luo L, Zhu L, Yu L, Sheng L, An K, Ando Y, Zhao X. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation. J. Power Sources. 2013; 241 (1): 274-280.
3. Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science. 1998; 280 (5370): 1735-1737.
4. García-Díaz BL, Colón-Mercado HR, Herrington K, Fox EB. Polarization and Electrocatalyst Selection for Polybenzimidazole Direct Methanol Fuel Cells. J Fuel Cell Sci Technol. 2014; 11 (3): 031001-031005.
5. Barroso de Oliveira M, Profeti LPR, Olivi P. Electrooxidation of methanol on PtMyOx (M=Sn, Mo, Os or W) electrodes. Electrochem. Commun. 2005; 7 (7): 703-709.
6. Hsieh CT, Lin JY. Fabrication of bimetallic Pt–M (M = Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells. J. Power Sources. 2009; 188 (2): 347-352.
7. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ. Designing bimetallic catalysts for a green and sustainable future. hem. Soc. Rev. 2012;41(24):8099-139.
8. Khorasani-Motlagh M, Noroozifar M, Ekrami-Kakhki MS. Investigation of the nanometals (Ni and Sn) in platinum binary and ternary electrocatalysts for methanol electrooxidation. Int. J. Hydrogen Energy. 2011;36 (18): 11554-11563.
9. Noroozifar M, Khorasani-Motlagh M, Ekrami-Kakhki MS, Khaleghian-Moghadam R. Enhanced electrocatalytic properties of Pt-chitosan nanocomposite for direct methanol fuel cell by LaFeO3 and carbon nanotube. J. Power Sources. 2014; 248 (1): 130-139.
10. Xu D, Bliznakov S, Liu Z, Fang J, Dimitrov N. Composition-dependent electrocatalytic activity of Pt–Cu nanocube catalysts for formic acid oxidation. Angew. Chem. Int. Ed. 2010; 49 (7): 1282-1285.
11. Habibi B, Delnavaz N. Electrosynthesis, characterization and electrocatalytic properties of Pt–Sn/CCE towards oxidation of formic acid. RSC Adv.. 2012; 2 (4): 1609-1617.
12. Salabat A, Barati A, Banijamali N. Synthesis and characterization of the Pt/SiO2 nanocomposite by the sol-gel method. J Nanostruct. 2011; 1 (1): 1-6.
13. Guo S, Sun S. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Ceram. Soc. 2012; 134 (5): 2492-2495.
14. Noroozifar M, Khorasani-Motlagh M, Ekrami-Kakhki MS, Khaleghian-Moghadam R. Electrochemical investigation of Pd nanoparticles and MWCNTs supported Pd nanoparticles-coated electrodes for alcohols (C1-C3) oxidation in fuel cells. J. Appl. Electrochem. 2014; 44 (2): 233-243.
15. Guibal E. Heterogeneous catalysis on chitosan-based materials: a review. Prog. Polym. Sci. 2005; 30 (1): 71-109.
16. Huang H, Yuan Q, Yang X. Preparation and characterization of metal-chitosan nanocomposites. Colloids Surf., B. 2004; 39 (1-2): 31-37.
17. Tang Z, Geng D, Lu G. A simple solution-phase reduction method for the synthesis of shape-controlled platinum nanoparticles. Mater. Lett. 2005; 59 (12): 1567-1570.
18. Su YK, Shen CM, Yang TZ, Yang HT, Gao HJ, Li HL. The dependence of Co nanoparticle sizes on the ratio of surfactants and the influence of different crystal sizes on magnetic properties. Appl. Phys. A. 2005; 81 (3): 569-572.
19. Mazumdar H, Haloi N. A study on Biosynthesis of Iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res. 2011; 1 (3): 39-49.
20. Rao CV, Singh SK, Viswanathan B. Electrochemical performance of nano-SiC prepared in thermal plasma. Indian J. Chem., Sect A. 2008; 47A (11): 1619-1625.
21. Liu YT, Yuan QB, Duan DH, Zhang ZL, Hao XG, Wei GQ, Liu SB. Electrochemical activity and stability of core-shell Fe2O3/Pt nanoparticles for methanol oxidation. J. Power Sources. 2013; 243 (1): 622-629.
22. Kulesza PJ, Matczak M, Wolkiewicz A, Grzybowska B, Galkowski M, Malik MA, Wieckowski A. Electrocatalytic properties of conducting polymer based composite film containing dispersed platinum microparticles towards oxidation of methanol. Electrochim. Acta. 1999; 44 (12): 2131-2137.
23. Ekrami-Kakhki MS, Khorasani-Motlagh M, Noroozifar M. Platinum nanoparticles self-assembled onto chitosan membrane as anode for direct methanol fuel cell. J. Appl. Electrochem. 2011; 41 (5): 527-534.
24. Yavari Z, Noroozifar M, Khorasani-Motlagh M. Multifunctional catalysts toward methanol oxidation in direct methanol fuel cell. J. Appl. Electrochem. 2015; 45 (5): 439-451.
25. Iwasita T. Electrocatalysis of methanol oxidation. Electrochim. Acta . 2002; 47 (22-23): 3663-3674.
26. Korzeniewski C, Childers CL. Formaldehyde yields from methanol electrochemical oxidation on platinum. J. Phys. Chem. B. 1998; 102 (3): 489-492.
27. Leger JM. Preparation and activity of mono- or bi-metallic nanoparticles for electrocatalytic reactions. Electrochim. Acta. 2005; 50 (15): 3123-3129.
28. Pournaghi-Azar MH, Habibi B. Electrocatalytic oxidation of methanol on poly (phenylenediamines) film palladized aluminum electrodes, modified by Pt micro-particles: comparison of permselectivity of the films for methanol. J. Electroanal. Chem. 2007; 601 (1-2): 53-62.
29. Lim DH, Lee WD, Lee HI. Highly dispersed and nano-sized Pt-based electrocatalysts for low-temperature fuel cells. Catal. Surv. Asia. 2008; 12 (4): 310-325.
30. Park KW, Choi JH, Kwon BK, Lee SA, Sung YE, Ha HY, Hong SA, Kim H, Wieckowski A. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B. 2002; 106 (8): 1869-1877.
31. Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater. Chem. Phys. . 2003; 78 (3): 563-573.
32. Yajima T, Wakabayashi N, Uchida H, Watanabe M. Adsorbed water for the electro-oxidation of methanol at Pt-Ru alloy. Chem. Commun. 2003; 7 (1): 828-829.
33. He Z, Chen J, Liu D, Zhou H, Kuang Y. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond Relat. Mater. 2004; 13 (10): 1764-1770.
34. Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger JM, Lamy C. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy. J. Electroanal. Chem. 1998; 444 (1): 41-53.
35. Jiang J, Kucernak A. Electrooxidation of small organic molecules on mesoporous precious metal catalysts: II: CO and methanol on platinum–ruthenium alloy. J. Electroanal. Chem. 2003; 543 (2): 187-199.
36. Zhao Y, Wang R, Han Z, Li C, Wang Y, Chi B, Li J, Wang X. Electrooxidation of methanol and ethanol in acidic medium using a platinum electrode modified with lanthanum-doped tantalum oxide film. Electrochim. Acta. 2015; 151 (1): 544-551.
37. Guo DJ, Li HL. Electrocatalytic oxidation of methanol on Pt modified single- walled carbon nanotubes. J. Power Sources. 2006; 160 (1): 44-49.
38. Kim J, Momma T, Osaka T. Cell performance of Pd–Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane. J. Power Sources. 2009; 189 (2): 999-1002.
39. Miyazaki K, Sugimura N, Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z. Perovskite-type oxides La1-xSrxMnO3 for cathode catalysts in direct ethylene glycol alkaline fuel cells. J. Power Sources. 2008; 178 (2): 683-686.
40. Yu EH, Scott K. Direct methanol alkaline fuel cell with catalysed metal mesh anodes. Electrochem. Commun. 2004; 6 (4): 361-365.
41. Gulzow E. Alkaline fuel cells: a critical view. J. Power Sources. 1996; 61 (1-2): 99-104.
42. Wang Y, Li L, Hu L, Zhuang L, Lu J, Xu B. A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem. Commun. 2003; 5 (8): 662-666.