Anionic and Cationic Surfactants in Ammonia Gas-Mediated Synthesis of β-Ni(OH)2 and NiO Nanostructures

Document Type : Research Paper

Authors

Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran

10.7508/JNS.2016.03.006

Abstract

Up to now, researchers have proposed several synthesis methods for the preparation of β-nickel(II) hydroxide nanostructures. Most of these approaches contain harsh synthetic conditions such as multi-step processes, high temperatures and long reaction time. In this work, a novel, facile and low cost method is introduced to produce of β-Ni(OH)2 nanostructures using the gas-solution precipitation from nickel(II) sulfate solution in the presence of anionic or cationic surfactant upon exposure to ammonia gas at room temperature. Herein, no other additive is needed and the method is suited for large-scale preparation. The structural characterizations were carefully investigated by the powder X-ray diffraction technique and Fourier transformation infrared spectroscopy. Further, the scanning electron microscopy results showed the important roles of the sodium dodecylsulfate and cetyltrimethylammonium bromide on the morphology and size of the products. The calcination process of hydroxide samples was also conducted to synthesize nickel(II) oxide nanostructures.

Keywords


1. M.R. Palacin, Recent advances in rechargeable battery materials: a chemist’s perspective, Chem. Soc. Rev. 2002; 38(9): 2565–2575.
2. H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc. 2010; 132(21): 7472–7477.
3. J. Sun , J. Cheng , C. Wang , X. Ma , M. Li , L. Yuan, Synthesis and morphological control of nickel hydroxide for lithium-nickel composite oxide cathode materials by an Eddy circulating precipitation method, Ind. Eng. Chem. Res. 2006; 45(6): 2146–2149.
4. G.T. Zhou, Q.Z. Yao, X. Wang, J.C. Yu, Preparation and characterization of nanoplatelets of nickel hydroxide and nickel oxide, Mater. Chem. Phys. 2006; 98(2): 267–272.
5. J. Estellea, P. Salagre, Y. Cesteros, M. Serra, F. Medina, J.E. Sueiras, Comparative study of the morphology and surface properties of nickel oxide prepared from different precursors, Solid State Ionics. 2003; 156(1): 233–243.
6. A. Kalam, A.S. Al-Shihri, A.G. Al-Sehemi, N.S. Awwad, G. Du, T. Ahmad, Effect of pH on solvothermal synthesis of β-Ni(OH)2 and NiO nano-architectures: surface area studies, optical properties and adsorption studies, Superlattices Microstruct. 2013; 55: 83–97.
7. Y. Wang, S. Gai, C. Li, F. He, M. Zhang, Y. Yan, P. Yang, Controlled synthesis and enhanced supercapacitor performance of uniform pompon-like β-Ni(OH)2 hollow microspheres, Electrochim. Acta. 2013; 90: 673–681.
8. R. Gomez-Reynoso, J. Ramirez, R. Nares, R. Luna, F. Murrieta, Characterization and catalytic activity of Ni/SBA-15, synthesized by deposition–precipitation, Catal. Today. 2005; 107–108: 926–932.
9 G.W. Yang, C.L. Xu, H.L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance, Chem. Commun. 2008; 2(48): 6537–6539.
10. D. Wang, R. Xu, X. Wang, Y. Li, NiO nanorings and their unexpected catalytic property for CO oxidation, Nanotechnol. 2006 ;17(4): 979–983.
11. G. Mattei, P. Mazzoldi, M.L. Post, D. Buso, M. Guglielmi, A. Martucci, Cookie-like Au/NiO nanoparticles with optical gas-sensing properties, Adv. Mater. 2007 ;19(4): 561–564.
12. F.B. Zhang, Y.K. Zhou, H.L Li, Nanocrystalline NiO as an electrode material for electrochemical capacitor, Mater. Chem. Phys. 2004; 83(2): 260–264.
13. N.P. Duong, T. Satoh, M. Fiebig, Ultrafast manipulation of antiferromagnetism of NiO, Phys. Rev. Lett. 2004; 93(11): 117402–117404.
14. M.C.A Fantini, F.F Ferreira, A. Gorenste, Theoretical and experimental results on Au-NiO and Au-CoO electrochromic composite films, Solid State Ionics. 2002; 152–153: 867–872.
15. A.A. Al-Ghamdi, W.E. Mahmoud, S.J. Yaghmour, F.M. Al-Marzouki, Structure and optical properties of nanocrystalline NiO thin film synthesized by sol-gel spin-coating method, J. Alloys Compd. 2009; 486(1): 9–13.
16. A. Morandeira, J. Fortage, T. Edvinsson, L.L. Pleux ,E. Blart, G. Boschloo, A. Hagfeldt, L. Hammarström, F. Odobel, Improved photon-to-current conversion efficiency with a nanoporous p-type NiO electrode by the use of a sensitizer-acceptor dyad, J. Phys. Chem. C. 2008; 112(5): 1721–1728.
17. J.D.V. Rani, S. Kamatchi, A. Dhathathreyan, Nanoparticles of nickel oxide and nickel hydroxide using lyophilisomes of fibrinogen as template, J. Colloid Interface Sci. 2010 ; 341(1) 48–52.
18. L.X. Yang, Y.J. Zhu, H. Tong, Z.H. Liang, L. Li, L. Zhang, Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol, J. Solid State Chem. 2007; 180(7): 2095–2101.
19. T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater. 2005; 293(1): 483–496.
20. E. Zhang, Y. Tang, Y. Zhang, C. Guo, L. Yang, Hydrothermal synthesis of β-nickel hydroxide nanocrystalline thin film and growth of oriented carbon nanofibers, Mater. Res. Bull. 2009; 44(8): 1765–1770.
21. Z.M. Khoshhesab, M. Sarfaraz, Preparation and characterization of NiO nanoparticles by chemical precipitation method, Syn. React. Inorg. Met. Chem. 2010; 40(9): 700–703.
22. Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu, G. Lu, Preparation of NiO nanoparticles in microemulsion and its gas sensing performance, Mater. Lett. 2012; 68: 168–170.
23. S. Thota, J. Kumar, Sol-gel synthesis and anomalous magnetic behavior of NiO nanoparticles, J. Phys. Chem. Solids. 2007; 68(10): 1951–1964.
24. H. Li, S. Liu, C. Huang, Z. Zhou, Y. Li, D. Fang, Characterization and supercapacitor application of coin-like β-nickel hydroxide nanoplates, Electrochim. Acta. 2011; 58: 89–94.
25. M. Aghazadeh, A.N. Golikand, M. Ghaemi, Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles, J. Hydrogen Energy. 2011; 36(14): 8674–8679.
26. C. Guo , Y.H. Tang, E.L. Zhang , X.C. Li , J.L. Li, Aggregation of self-assembled Ni(OH)2 nanosheets under hydrothermal conditions, J. Mater. Sci. Mater. Electron. 2009; 20(11): 1118–1122.
27. D. Wang , C. Song , Z. Hu , X. Fu, Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures, J. Phys. Chem. B. 2005; 109(3) :1125–1129.
28. Z.H. Liang , Y.J. Zhu , X.L. Hu, β-Nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets, J. Phys. Chem. B. 2004; 108(11): 3488–349.
29. J.H. Liang, Y.D. Li, Synthesis and Characterization of Ni(OH)2 Single-crystal Nanorods, Chem. Lett. 2003; 32(12) : 1126–1127.
30. Z.Y. Wu, C.M. Liu, L. Guo, R. Hu, M.I. Abbas, T.D. Hu, H.B. Xu, Structural characterization of nickel oxide nanowires by X-ray absorption near-edge structure spectroscopy, J. Phys. Chem. B. 2005; 109(7): 2512–2515.
31. X.L. Li, J.F. Liu, Y.D. Li, Low-temperature conversion synthesis of M(OH)2 (M=Ni, Co, Fe) nanoflakes and nanorods, Mater. Chem. Phys. 2003; 80(1): 222–227.
32. K. Nakamoto, Infrared and raman spectra of inorganic and coordination compounds, fifth ed., Wiley, New York, 1997.
33. P. Jeevanandam , Y. Koltypin , A. Gedanken, Synthesis of nanosized α-nickel hydroxide by a sonochemical method, Nano Lett. 2001; 1(5): 263–266.
34. G.J.D.A. Soler-Illia, M. Jobbagy, A.E. Regazzoni, M.A. Blesa, Synthesis of nickel hydroxide by homogeneous alkalinization, precipitation mechanism, Chem. Mater. 1999; 11(11): 3140–3146.
35. M.M. Kashani Motlagh, A.A. Youzbashi, F. Hashemzadeh, L. Sabaghzadeh, Structural properties of nickel hydroxide/oxyhydroxide and oxide nanoparticles obtained by microwave-assisted oxidation technique, Powder Technol. 2013; 237: 562–568.
36. R.B. Viana, A.B.F. Dasilva, A.S. Pimentel, Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants, Adv. Phys. Chem. 2012; 12: 2012.
37. S. Cabanas-Polo, K.S. Suslick, A.J. Sanchez-Herencia, Effect of reaction conditions on size and morphology of ultrasonically prepared Ni(OH)2 powders, Ultrason. Sonochem. 2011; 18(4): 901–906.
38. S. Ren, C. Yang, C. Sun, Y. Hui, Z. Dong, J. Wang, X. Su, Novel NiO nanodisks and hollow nanodisks derived from Ni(OH)2 nanostructures and their catalytic performance in epoxidation of styrene, Mater. Lett. 2012; 80: 23–25.