Photodegradation of Acid Black 1 and Removing Heavy Metals from the Water by an Inorganic Nanocomposite Synthesized via Simple Co-Precipitation Method

Document Type : Research Paper

Authors

Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

10.7508/JNS.2016.03.002

Abstract

In this experimental work, PbS/ZnS/ZnO nanocomposite was synthesized via a simple co-precipitation method. The effect of Zn2+/Pb2+ mole ratio was investigated on the product size and morphology. The products were characterized via scanning electron microscopy to obtain product size and morphology. The optical properties of the nanocomposites were studied by ultra violet-visible spectroscopy. Photocatalytic activity of the product was examine by decomposition of acid black 1 as dye. To investigation of the effect of as synthesized nanocomposite on the water treatment, the influences of the nanocomposite to remove heavy ions was studied by atomic absorption spectroscopy. The results showed that the synthesized nanocomposite has well optical properties, photocatalytic and water treatment activities.  

Keywords


1. Qin A-M, Fang Y-P, Zhao W-X, Liu H-Q, Su C-Y. Directionally dendritic growth of metal chalcogenide crystals via mild template-free solvothermal method. J Cryst Growth. 2005; 283(1): 230-241.
2. Zhou S, Feng Y, Zhang L. Sonochemical synthesis of large-scale single-crystal PbS nanorods. J Mater Res. 2003; 18(05): 1188-1191.
3. Dutta AK, Ho T, Zhang L, Stroeve P. Nucleation and growth of lead sulfide nano-and microcrystallites in supramolecular polymer assemblies. Chem Mater. 2000; 12(4): 1042-1048.
4. Ni Y, Wang F, Liu H, Yin G, Hong J, Ma X, et al. A novel aqueous-phase route to prepare flower-shaped PbS micron crystals. J Cryst Growth. 2004; 262(1): 399-402.
5. Zhou G, Lü M, Xiu Z, Wang S, Zhang H, Zhou Y, et al. Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. The Journal of Physical Chemistry B. 2006; 110(13): 6543-6548.
6. Zhang Z, Lee SH, Vittal JJ, Chin WS. A simple way to prepare PbS nanocrystals with morphology tuning at room temperature. The Journal of Physical Chemistry B. 2006; 110(13): 6649-6654.
7. Zhang W, Yang Q, Xu L, Yu W, Qian Y. Growth of PbS crystals from nanocubes to eight-horn-shaped dendrites through a complex synthetic route. Mater Lett. 2005; 59(27): 3383-3388.
8. Gautam UK, Seshadri R. Preparation of PbS and PbSe nanocrystals by a new solvothermal route. Mater Res Bull. 2004; 39(4): 669-676.
9. Saraidarov T, Reisfeld R, Sashchiuk A, Lifshitz E. Synthesis and characterization of PbS nanorods and nanowires. Physica E: Low-dimensional Systems and Nanostructures. 2007; 37(1): 173-177.
10. Wang Z-S, Huang C-H, Huang Y-Y, Hou Y-J, Xie P-H, Zhang B-W, et al. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem Mater. 2001; 13(2): 678-682.
11. Westermark K, Rensmo H, Lees AC, Vos JG, Siegbahn H. Electron spectroscopic studies of bis-(2, 2’-bipyridine)-(4, 4’-dicarboxy-2, 2’-bipyridine)-ruthenium (II) and bis-(2, 2’-bipyridine)-(4, 4’-dicarboxy-2, 2’-bipyridine)-osmium (II) adsorbed on nanostructured TiO2 and ZnO surfaces. The Journal of Physical Chemistry B. 2002; 106(39): 10108-10113.
12. Singhai M, Chhabra V, Kang P, Shah D. Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion. Mater Res Bull. 1997; 32(2): 239-247.
13. Lin H-M, Tzeng S-J, Hsiau P-J, Tsai W-L. Electrode effects on gas sensing properties of nanocrystalline zinc oxide. Nanostruct Mater. 1998; 10(3): 465-477.
14. Feldmann C. Polyol‐Mediated Synthesis of Nanoscale Functional Materials. Adv Funct Mater. 2003; 13(2): 101-107.
15. Rosso I, Galletti C, Bizzi M, Saracco G, Specchia V. Zinc oxide sorbents for the removal of hydrogen sulfide from syngas. Industrial & Engineering Chemistry Research. 2003; 42(8): 1688-1697.
16. Kitano M, Shiojiri M. Benard convection ZnO/resin lacquer coating—a new approach to electrostatic dissipative coating. Powder Technol. 1997; 93(3): 267-273.
17. Hamminga GM, Mul G, Moulijn JA. Real-time in situ ATR-FTIR analysis of the liquid phase hydrogenation of γ-butyrolactone over Cu-ZnO catalysts: A mechanistic study by varying lactone ring size. Chem Eng Sci. 2004; 59(22): 5479-5485.
18. Curri M, Comparelli R, Cozzoli P, Mascolo G, Agostiano A. Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye. Materials Science and Engineering: C. 2003; 23(1): 285-289.
19. Fotou GP, Pratsinis SE. Photocatalytic destruction of phenol and salicylic acid with aerosol-made and commercial titania powders. Chem Eng Commun. 1996; 151(1): 251-269.
20. Wu J-J, Liu S-C. Catalyst-free growth and characterization of ZnO nanorods. The Journal of Physical Chemistry B. 2002; 106(37): 9546-9551.
21. Hu J, Li Q, Wong N, Lee C, Lee S. Synthesis of uniform hexagonal prismatic ZnO whiskers. Chem Mater. 2002; 14(3): 1216-1219.
22. Lao J, Huang J, Wang D, Ren Z. ZnO nanobridges and nanonails. Nano Lett. 2003; 3(2): 235-238.
23. Lao JY, Wen JG, Ren ZF. Hierarchical ZnO nanostructures. Nano Lett. 2002; 2(11): 1287-1291.
24. Pesika NS, Hu Z, Stebe KJ, Searson PC. Quenching of growth of ZnO nanoparticles by adsorption of octanethiol. The Journal of Physical Chemistry B. 2002; 106(28): 6985-6990.
25. Radovanovic PV, Norberg NS, McNally KE, Gamelin DR. Colloidal transition-metal-doped ZnO quantum dots. J Am Chem Soc. 2002; 124(51): 15192-15193.
26. Seelig EW, Tang B, Yamilov A, Cao H, Chang R. Self-assembled 3D photonic crystals from ZnO colloidal spheres. Mater Chem Phys. 2003; 80(1): 257-263.
27. Hoyer P, Weller H. Potential-dependent electron injection in nanoporous colloidal ZnO films. The Journal of Physical Chemistry. 1995; 99(38): 14096-14100.
28. Paul G, Bandyopadhyay S, Sen S, Sen S. Structural, optical and electrical studies on sol–gel deposited Zr doped ZnO films. Mater Chem Phys. 2003; 79(1): 71-75.
29. Qian D, Jiang J, Hansen PL. Preparation of ZnO nanocrystals via ultrasonic irradiation. Chem Commun. 2003; (9): 1078-1079.
30. Cheng B, Samulski ET. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chem Commun. 2004; (8): 986-987.
31. Jia Z, Yue L, Zheng Y, Xu Z. Rod-like zinc oxide constructed by nanoparticles: synthesis, characterization and optical properties. Mater Chem Phys. 2008; 107(1): 137-141.
32. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, et al. One‐dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2003; 15(5): 353-389.
33. Xiong Q, Chen G, Acord J, Liu X, Zengel J, Gutierrez H, et al. Optical properties of rectangular cross-sectional ZnS nanowires. Nano Lett. 2004; 4(9): 1663-1668.
34. Yao WT, Yu SH, Pan L, Li J, Wu QS, Zhang L, et al. Flexible Wurtzite‐Type ZnS Nanobelts with Quantum‐Size Effects: a Diethylenetriamine‐Assisted Solvothermal Approach. small. 2005; 1(3): 320-325.
35. Salavati-Niasari M, Davar F, Seyghalkar H, Esmaeili E, Mir N. Novel inorganic precursor in the controlled synthesis of zinc blend ZnS nanoparticles via TGA-assisted hydrothermal method. CrystEngComm. 2011; 13(8): 2948-2954.
36. Liu J, Yan P, Yue G, Kong L, Zhuo R, Qu D. Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition. Mater Lett. 2006; 60(29): 3471-3476.
37. Wang H, Chen Z, Cheng Q, Yuan L. Solvothermal synthesis and optical properties of single-crystal ZnS nanorods. J Alloys Compd. 2009; 478(1): 872-875.
38. Wang L, Chen L, Luo T, Qian Y. A hydrothermal method to prepare the spherical ZnS and flower-like CdS microcrystallites. Mater Lett. 2006; 60(29): 3627-3630.
39. Zhu Y-C, Bando Y, Xue D-F. Spontaneous growth and luminescence of zinc sulfide nanobelts. Appl Phys Lett. 2003; 82: 1769.
40. Zhang D, Qi L, Cheng H, Ma J. Preparation of ZnS nanorods by a liquid crystal template. J Colloid Interface Sci. 2002; 246(2): 413-416.