High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

Document Type : Research Paper


1 Chemistry Faculty, North Tehran Branch, Islamic Azad University, Tehran, Iran, P.O.Box .11155-9161

2 Department of chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran P.O.Box-335-14115

3 Department of Ceramic, Material and Energy Research Center, Tehran, Iran P.O. Box: 31787-316



Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, stacking of Graphene can be effectively prevented, promoting diffusion of oxygen molecules through the Graphene sheets and enhancing the oxygen reduction reaction electrocatalytic activity. Compared to commercial catalysts (i.e., state-of-the-art Pt/C catalyst) the as synthesized Pt supported polydopamine grafted reduced graphite oxide (Pt@PDA-rGO) hybrid displays very high oxygen reduction reaction catalytic activities. We propose a unique 2D profile of the polydopamine-rGO role as a barrier preventing leaching of Pt into the electrolyte. The fabricated electrodes were evaluated with electrochemical techniques for oxygen reduction reaction and the obtained results were further verified by the transmission electron microscopy micrographs on the microstructure of the integrated pt@PDA-rGO structures. It has been revealed that the electrochemical impedance spectroscopy technique can provide more explicit information than polarization curves on the performance dependence on charge-transfer and mass transport processes at different overpotential regions. 


1. Viva, F. A.; Bruno, M. M.; Franceschini, E. A., et al. Mesoporous carbon as Pt support for PEM fuel cell, International Journal of Hydrogen Energy. 2014.
2. Tiwari, J. N.; Kemp, K. C.; Nath, K.; Tiwari, R. N.; Nam, H. G.; Kim, K. S. Interconnected Pt-nanodendrite/DNA/reduced-graphene-oxide hybrid showing remarkable oxygen reduction activity and stability, ACS Nano. 2013, 7, 9223-9231.
3. Yuan XZ, W. H. PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, Verlag London Ltd: Springer, 2008.
4. Wolf Vielstich , H. A. G., Harumi Yokokawa Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability, Volumes 5 & 6: wiley, 2009.
5. Fournier, J.; Faubert, G.; Tilquin, J. Y.; Côté, R.; Guay, D.; Dodelet, J. P. High-performance, low Pt content catalysts for the electroreduction of oxygen in polymer-electrolyte fuel cells, Journal of the Electrochemical Society. 1997, 144, 145-154.
6. Marinkas, A.; Arena, F.; Mitzel, J., et al. Graphene as catalyst support: The influences of carbon additives and catalyst preparation methods on the performance of PEM fuel cells, Carbon. 2013, 58, 139-150.
7. Cong, H. P.; Wang, P.; Gong, M.; Yu, S. H. Facile synthesis of mesoporous nitrogen-doped graphene: An efficient methanol-tolerant cathodic catalyst for oxygen reduction reaction, Nano Energy. 2014, 3, 55-63.
8. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene, Chemical Reviews. 2010, 110, 132-145.
9. Blanita, G.; Lazar, M. D. Review of graphene-supported metal nanoparticles as new and efficient heterogeneous catalysts, Micro and Nanosystems. 2013, 5, 138-146.
10. Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface, Nano Letters. 2009, 9, 2255-2259.
11. Ji, K.; Chang, G.; Oyama, M.; Shang, X.; Liu, X.; He, Y. Efficient and clean synthesis of graphene supported platinum nanoclusters and its application in direct methanol fuel cell, Electrochimica Acta. 2012, 85, 84-89.
12. Seger, B.; Kamat, P. V. Electrocatalytically active graphene-platinum nanocomposites. role of 2-D carbon support in pem fuel cells, Journal of Physical Chemistry C. 2009, 113, 7990-7995.
13. Guo, S.; Zhang, S.; Sun, S. Tuning nanoparticle catalysis for the oxygen reduction reaction, Angewandte Chemie - International Edition. 2013, 52, 8526-8544.
14. Chua, C. K.; Pumera, M. Selective removal of hydroxyl groups from graphene oxide, Chemistry - A European Journal. 2013, 19, 2005-2011.
15. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B., et al. Graphene-based composite materials, Nature. 2006, 442, 282-286.
16. Mattevi, C.; Eda, G.; Agnoli, S., et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived craphene thin films, Adv Funct Mater. 2009, 19, 2577-2583.
17. Buzaglo, M.; Shtein, M.; Kober, S.; Lovrinèiæ, R.; Vilan, A.; Regev, O. Critical parameters in exfoliating graphite into graphene, Physical Chemistry Chemical Physics. 2013, 15, 4428-4435.
18. Qu, K.; Wu, L.; Ren, J.; Qu, X. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction, ACS Applied Materials and Interfaces. 2012, 4, 5001-5009.
19. Zhang, M.; Xie, J.; Sun, Q.; Yan, Z.; Chen, M.; Jing, J. Enhanced electrocatalytic activity of high Pt-loadings on surface functionalized graphene nanosheets for methanol oxidation, International Journal of Hydrogen Energy. 2013, 38, 16402-16409.
20. Xu, L. Q.; Yang, W. J.; Neoh, K. G.; Kang, E. T.; Fu, G. D. Dopamine-induced reduction and functionalization of graphene oxide nanosheets, Macromolecules. 2010, 43, 8336-8339.
21. Hu, X.; Qi, R.; Zhu, J., et al. Preparation and properties of dopamine reduced graphene oxide and its composites of epoxy, Journal of Applied Polymer Science. 2014, 131.
22. Lee, W.; Lee, J. U.; Jung, B. M., et al. Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine, Carbon. 2013, 65, 296-304.
23. Huang, Y.; Liu, Y.; Yang, Z., et al. Synthesis of yolk/shell Fe3O4-polydopamine-graphene- Pt nanocomposite with high electrocatalytic activity for fuel cells, Journal of Power Sources. 2014, 246, 868-875.
24. Tian, J.; Deng, S. Y.; Li, D. L., et al. Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: Characterization and the enhanced biosensing application, Biosensors and Bioelectronics. 2013, 49, 466-471.
25. Zhang, Q. L.; Xu, T. Q.; Wei, J.; Chen, J. R.; Wang, A. J.; Feng, J. J. Facile synthesis of uniform Pt nanoparticles on polydopamine-reduced graphene oxide and their electrochemical sensing, Electrochimica Acta. 2013, 112, 127-132.
26. Zhou, H.; Liu, Y.; Chi, W.; Yu, C.; Yu, Y. Preparation and antibacterial properties of Ag@polydopamine/graphene oxide sheet nanocomposite, Applied Surface Science. 2013, 282, 181-185.
27. Hummers Jr, W. S.; Offeman, R. E. Preparation of graphitic oxide, Journal of the American Chemical Society. 1958, 80, 1339.
28. Shin, H. J.; Kim, K. K.; Benayad, A., et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Advanced Functional Materials. 2009, 19, 1987-1992.
29. Kheirmand, M.; Gharibi, H.; Abdullah Mirzaie, R.; Faraji, M.; Zhiani, M. Study of the synergism effect of a binary carbon system in the nanostructure of the gas diffusion electrode (GDE) of a proton exchange membrane fuel cell, Journal of Power Sources. 2007, 169, 327-333.
30. Gharibi, H.; Faraji, M.; Kheirmand, M. The Role of PANI/Nafion on the Performance of ORR in Gas Diffusion Electrodes of PEM Fuel Cell, Electroanalysis. 2012, 24, 2354-2364.
31. Ferrari, A. C.; Meyer, J. C.; Scardaci, V., et al. Raman spectrum of graphene and graphene layers, Physical Review Letters. 2006, 97.
32. Antolini, E.; Giorgi, L.; Cardellini, F.; Passalacqua, E. Physical and morphological characteristics and electrochemical behaviour in PEM fuel cells of PtRu/C catalysts, Journal of Solid State Electrochemistry. 2001, 5, 131-140.
33. Vidakoviæ, T.; Christov, M.; Sundmacher, K. A method for rough estimation of the catalyst surface area in a fuel cell, Journal of Applied Electrochemistry. 2009, 39, 213-225.
34. Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi, L. Comparison of high surface Pt/C catalysts by cyclic voltammetry, Journal of Power Sources. 2002, 105, 13-19.
35. Allen J. Bard , L. R. F. Electrochemical Methods: Fundamentals and Applications Wiley, 2000 |.
36. Gharibi, H.; Javaheri, M.; Mirzaie, R. A. The synergy between multi-wall carbon nanotubes and Vulcan XC72R in microporous layers, International Journal of Hydrogen Energy. 2010, 35, 9241-9251.
37. Yuan, X.-Z., Song, C., Wang, H., Zhang, J. Electrochemical Impedance Spectroscopy in PEM Fuel Cells,Fundamentals and Applications: Springer, 2010.