Fabrication of Novel High Potential Chromium-Doped TiO2 Nanoparticulate Electrode-based Dye-Sensitized Solar Cell (DSSC)

Document Type : Research Paper

Authors

1 Department of Electrical Engineering, Kashan Branch, Islamic Azad University, Kashan, IRAN

2 Institute of Nanosciences and Nanotechnology, University of Kashan, Kashan, IRAN and Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, IRAN

3 Institute of Nanosciences and Nanotechnology, University of Kashan, Kashan, IRAN

10.7508/jns.2015.04.016

Abstract

In the current study, pure TiO2 and Cr-doped TiO2 (Cr@TiO2) nanoparticles were synthesized via sol-gel method and the resulting materials were applied to prepare the porous TiO2 electrodes for dye-sensitized solar cells (DSSCs). It is hypothesized that the advantages of the doping of the metal ions into TiO2 lattice are the temporary rapping of the photogenerated electron-hole (charge carriers) by the metal dopants and the retarding charge recombination during electron migration from TiO2 to the electrode surface. Spectroscopic and microscopic findings showed that all the prepared samples consist of only anatse phase with average size of 10-15nm. In addition, relative to the bare TiO2, Cr@TiO2 absorption in visible light region was considerably improved due to the surface Plasmon phenomenon. Current-voltage (I-V) curves exhibited that the solar cells made of Cr@TiO2 nanoparticles results in higher photocurrent density than the cells made of bare TiO2. The large improvement of photovoltaic performance of the Cr-doped TiO2 cell stems from negative shift of TiO2 conduction band and retarding charge recombination. Finally, it is concluded that the proposed route in the current study is an effective way to enhance the energy conversion efficiency and overall performance of DSSC.

Keywords


[1] Hamadanian, M., Jabbari, V., Gravand, A., Asad, M. Surface & Coatings Technology, 206 (2012) 4531–4538.
[2] Tisdale, W. A., Williams, K., Timp, B., Science, 328 (2010) 1543–1547.
[3] Higashimoto, S., Sakiyama, M., Azuma, M., Thin Solid Films, 503 (2006) 201–206.
[4] Tachibana, Y., Vayssieres, L., Durrant, J., Nat. Photon., 6 (2012) 511–518.
[5] Kudo, A., Miseki, Y., Chem. Soc. Rev., 38 (2009) 253–278.
[6] McFarland, E. W., Tang, J., Nature, 421 (2003) 616–618.
[7] Bakulin, A. A., Rao, A., Pavelyev, V. G., Science, 335 (2012) 1340–1344.
[8] Grätzel, M., Journal of Photochemical and Photobiology: Photochemical Reviews, 4 (2003) 145–153
[9] Kabra, K., Chaudhary, R., Sawhney, R.L., International Journal of Green Energy, 6 (2009) 83- 91.
[10] Jaroenworaluck, A., Sunsaneeyametha, W., Kosachan, N., Stevens, R., 38 (2006) 473-477.
[11] Wang, M., Huang, C., Cao, Y., Yu, Q., Deng, Z., Journal of Physics D: Applied Physics, 42 (2009) 155104-155110.
[12] Karthikeyan, C. S., Katja, P., Wietasch, H., Thelakkat, M., Sol. Energy Mater. Sol. Cells, 91 (2007) 432–439.
[13] Zaban, A. S., Chen, G., Chappel, S., Gregg, B. A., Chem. Commun., 12 (2000) 2231–2232.
[14] Chappel, S., Chen, S. G., Zaban, A., Langmuir, 18 (2002) 3336–3342.
[15] Ma, T., Akiyama, M., Abe, E., Imai, I., Nano Lett., 5 (2005) 2543–2547.
[16] Stamplecoskie, K. G., Ju, J., Farvid, S. S., Radovanovic, P. V., Nano Lett., 8 (2008) 2674– 2681.
[17] Perea, D. E., Hemesath, E. R., Schwalbach, E. J., Lensch-Falk, J. L., Voorhees, P. W., Lauhon, L., J. Nat. Nanotechnol., 4 (2009) 315–319.
[18] Klosek, S., Raftery, D., J. Phys. Chem. B, 105 (2001) 2815-2821.
[19] Zhang, X., Liu, Q.Q., Mater. Lett., 62 (2008) 2589-2593.
[20] Imahori, H., Hayashi, S., Umeyama, T., Eu, S., Oguro, S., Kang, A., Matano, Y., Shishido, T., Ngamsinlapasathian, S., Yoshikawa, S., Langmuir, 22 (2006) 11405-11411.
[21] Feng, X., Shankar, K., Paulose, M., Grimes, C. A., Angew. Chem. Int. Ed., 48 (2009) 8095–8098.
[22] Kim, D. H., Choi, D. K., Kim, S. J., and Lee, K. S., Catalysis Communications, 9 (2008) 654– 657.
[23] Dhayal, M., Sharma, S. D., Kant, C. K., Saini, K., and Jain, S. C., Surface Science, 602 (2008) 1149–1154.
[24] Mo, J., Zhang, Y., Xu, Q., Lamson, J. J., Zhao, R., Atmospheric Environment, 43 (2009) 2229– 2246.
[25] Ko, Y K. Lee, H., Jung, C. Y., J. Journal of Colloid and Interface Science, 283 (2005) 482–487.
[26] Hamadanian, M., Jabbari, V., Asad, M., Shamshiri, M., Mutlay, I., Journal of the Taiwan
 Institute of Chemical Engineers, 44 (2013) 748– 757.
[27] Hamadanian, M., Sadeghi Sarabi, A., Mihammadi Mehra, A., Jabbari, V., Applied Surface Sciences, 257 (2011) 10639–10644.
[28] Hamadanian, M., Jabbari, V., Gravand, A., Materials Science in Semiconductor Processing, 15 (2012) 371–379.
[29] Hamadanian, M., Reisi-Vanani, A., Razi, P., Hoseinifard, S., Jabbari, V., Applied Surface Science, 285 (2013) 121–129.
[30] Hamadanian, M., Sadeghi Sarabi, A., Mihammadi Mehra, A., Jabbari, V., Journal of Materials Science in Semiconductor Processing, 21, (2014) 161-166.
[31] Hamadanian, M., Jabbari, V., Gravand, A., Materials Science in Semiconductor Processing, 16 (2013) 1352–1359.
[32] Nagaveni, K., Hegde, M.S., Madras, G., J. Phys. Chem. B, 108 (2004) 20204.
[33] Choi, W., Termin, A., Hoffmann, M.R., J. Phys. Chem., 98 (1994) 13669.
[34] Wang, X., Yang, Y., Jiang, Z., Fan, R., Eur. J. Inorg. Chem., 12 (2009) 3481–3487.
[35] Wang, Y.M., Liu, S.W., Lu, M.K., Wang, S.F., Gu, F., Gai, X.Z., Cui, X.P., Pan, J., J. Mol. Catal. A, 215 (2004) 137-142.
[36] Lam, C., Chiang, K., Amal, R., Gary, K., Low, C., Appl Catal B Environ., 72 (2006) 364-370.
[37] Zhang, Y., Zhang, H., Xu, Y., Wang, Y. J., Solid State Chem., 177 (2004) 3490–3498.
[38] Wang, Y., Hao, Y., Cheng, H., Ma, J., Xu, B., Li, W., Cal, S., Journal of Materials Science, 34 (1999) 2773–2779.
[39] Murakoshi, K., Kano, G., Wada, Y., Yanagida, S., Miyazaki, H., Matsumoto, M., Murasawa, S., J. Electroanal. Chem., 396 (1995) 27-34.
[40] Oregan B. O., and Gratzel, M., Nature, 353 (1991) 737–739.
[41] Nazeeruddin, M. K., Kay A., and Gratzel, M., J. Amer. Chem. Soc., 115 (1993) 6832-6838