Fabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method

Document Type : Research Paper

Author

Department of Science, Arak University of Technology, Arak, Iran

10.7508/jns.2015.04.010

Abstract

In this research zinc oxide (ZnO) nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis), Fourier transform infra-red (FT-IR) and energy dispersive X-ray (EDX) spectroscopy. The structure of nanoparticles was studied using XRD pattern. The crystallite size of ZnO nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the SEM. The grain size of zinc oxide nanoparticles were in suitable agreement with the crystalline size calculated by XRD results. The optical properties of particles were studied with UV-Vis an FTIR absorption spectrum. The Raman spectrum measurements were carried out using a micro-laser Raman spectrometer forms the ZnO nanoparticles. At the end studied the effect of calcined temperature on the photoluminescence (PL) emission of ZnO nanoparticles.

Keywords


[1] Y. Li, L. Xu, X. Li, X. Shen, A. Wang, Applied Surface Science 256 (2010) 4543–4547.
[2]  L.  Bahadur,  M.  Hamdani,  J.F.  Koenig,  P.  Chartier,  Solar  Energy Mater.  14  (I986)  107.
[3] N. A. Samat, R. M. Nor, Ceramics International 39 (2013) S545–S548.
[4] Z.S. Hu, G. Oskam, P.C. Searson, J. Colloid Interf. Sci. 263 (2003) 454–460.
[5] F.C.M. Van De Pol, Cer. Bull. 69,1990.1959.
[6] A. Sharma, B.P. Singh, S. Dhar, A. Gondorf, M. Spasova, Surface Science 606 (2012) L13–L17.
[7] J.H. Kim, W.C. Choi, H.Y. Kim, Y. Kang, Y.-K. Park, Powder Technol. 153 (2005) 166–175.
[8] S. Komarneni,M. Bruno, E.Mariani, Mater. Res. Bull. 35 (2000) 1843–1847.
[9] Z.R. Dai, Z.W. Pan, Z.L. Wang, , Adv. Funct. Mater. 13 (2003) 9–24.
[10] S.S. Alias, A.B. Ismail, A.A. Mohamad, J Alloys Compd 499 (2010) 231–237.
[11] T. Tani, L. Mädler, S.E. Pratsinis, J. Nanopart. Res. 4 (2002) 337–343.
[12] A. Erol, S. Okur, B. Comba, O. Mermer, M.C. Arıkan, Sensors  Actuators B145 (2010) 174–180.
[13]  K. Hedayati, G. Nabiyouni,  Appl. Phys. A 116 (2014) 1605-1612.
[14] A. K. Zaka, W.H. Abd. Majid, M. Darroudi, R Yousefi, “Mater Lett 65 (2011) 70–73.
[15] R.Y. Hong, J.H. Li, L.L. Chen, D.Q. Liu, H.Z. Li, Y. Zheng, J. Ding, Powder Technology 189 (2009) 426–432.
[16] C. J. Cong, L. Liao, Q. Y. Liu, J. C. Li, K. L. Zhang, Nanotechnology 17 (2006) 1520–1526.
[17] Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, C.n Wang, Nanotechnology14(2003) 11–15.
[18] G. Xiong, U. Pal, J. Garcia Serrano, J App Phys 101,  (2007) 024317.
[19] L. Nejati-Moghadam, D. Ghanbari, M. Salavati-Niasari, A. Esmaeili-Bafghi-Karimabad , S. Gholamrezaei, J. Mater. Sci. Mater. Electron. 26 (2015) 6075-6082
[20] S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J Indus Eng Chem. 20 (2014) 3335-3341.
[21] P. Jamshidi, M. Salavati-Niasari, D. Ghanbari, H.R. Shams, J Clust Sci. 24 (2013) 1151-1162
[22] S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J Indus Eng Chem. 20 (2014) 4000-4007.