Synthesis of Cuprous Oxide by Thermal Treatment in Liquid Paraffin

Document Type : Research Paper

Authors

Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, 77188-97111 Iran

10.7508/jns.2015.03.012

Abstract

Cu2O nanoparticles were synthesized by thermal treatment in liquid paraffin without any inert gas protection using nano structures of Schiff base copper (II) complex (1) as precursor. Liquid paraffin was used as solvent and reductant. Span 80 was applied to control the morphology of cuprous oxide nanoparticles. The nano structure of the complex was characterized by X-ray diffraction measurements, UV–visible spectroscopy and Fourier transforms infrared spectroscopy. Thermal stability of Cu complex in its nano size form has also been studied by thermal gravimetric and differential scanning calorimetry analysis. The obtained cuprous oxide nanoparticle has been characterized by XRD measurements and FT- IR spectroscopy. The morphology, structure and size of the nano structure of 1 and Cu2O are investigated by scanning electron microscopy. The resulted cuprous oxide nanoparticles with average diameter about 30-40 nm were obtained and they have uniform morphology and stable when exposed to air.

Keywords


[1] C. Burda, X.B. Chen, R. Narayanan, M. A. El-   Sayed, Chem. Rev. 105(4) (2005) 1025–1102
[2] M. Y. Masoomi, A. Morsali, Coord. Chem. Rev. 256 (2012) 2921– 2943
[3] J. Wen, J. Li, S. Liu, Q. Chen. Colloid. Surf. A 373(1-3) (2011) 29‒35.
[4] I. Grozdanov, Mater. Lett. 19 (1994) 281-285.
[5] M.Y. Shen, T. Yokouchi, S. Koyama, T. Goto, Phys. Rev. B 56 (1997) 13066-13227.
[6] W. Shi, K. Lim, X. Liu, J. Appl. Phys. 81 (1997) 2822-2827.
[7] H. Zhang, X. Ren, Z. L. Cui, J. Cryst. Growth.04 ( 2007) 206–210.
[8] B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro,S. O'Brien, Nano. Lett. 6(9) (2006) 2095–2098.
[9] J. T. Zhang, J. F. Liu, Q. Peng, X. Wang, Y. D. Li, Chem Mater, 18(4) (2006) 867–871.
[10] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Taracon, Nature 407(28) (2000) 496–499.
[11] C. H. Kuo, M. H. Huang, J. Am. Chem. Soc. 130(38) (2008) 12815–12820.
[12] R. V. Kumar, R. E. Elgamiel, Y. Diamant, A. Gedanken, Langmuir. 17 (2001) 1406–1410.
[13] S. Li, X. Guo, Y. Wang, A. Xie, F. Huang, Y. Shen, X. Wang. Dalton. T. 40 (2011) 6745‒6750.
[14] L. Feng, C. Zhang, G. Gao, D. Cui. Nano. Res. Lett. 7(276) (2012) 1‒10.
[15] M. Sen, E. Erboz. Food. Res. Int. 43 (2010) 1361‒1364.
[16] S. Yallappa, J. Manjannan, M. Sindhe, N. Satyanarayan, S. Pramod, K. Nagaraja. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 110 (2013) 108‒115.
[17] Mercury 1.4.1 2001- 2005 Copyright Cambridge Crystallographic Data Centre 12 Union Road CambridgeCB2 1EZ UK
[18] L. Bessais, C. Djega-Mariadassou, V. H. Ky, N. X. Phuc. J. Alloys. Comp. 426 (2006) 22.
[19] R. Ruzitschka, M.  Reissner, W. Steiner, P. Rogl. J. Magn. Magn. Mater. 806 (2002) 242-245.
[20] P. Schobinger-Papamantellos, K. H. J. Buschow, C.H. de Groot, F. R. de Boer, G. Böttger and C. Ritter. J. Phys. Condens. Matter. 11 (1999) 4469-4481.
[21] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed., Wiley, New York, 1997.
[22] B. Ding, Y.Y. Liu, X.J. Zhao, E.C. Yang, X.G. Wang, J. Mol. Struct. 920 (2009) 248-251.
[23] K.M. Vyas, R.N. Jadeja, D. Patel, R.V. Devkar, V.K. Gupta, Polyhedron. 65 (2013) 262-274.
[24] A. El-Trass, H. Elshamy, I. El-Mehasseb, M. El- Kemary, Appl. Surf. Sci. 258 (2012) 2997-3001.