Microwave-assisted Synthesis of MgFe2O4-ZnO Nanocomposite and Its Photo-catalyst Investigation in Methyl Orange Degradation

Document Type : Research Paper


1 Department of Physics, Faculty of Science, Arak University, Arak 38156-88349, Iran

2 Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran



In this work firstly MgFe2O4 nanoparticles were synthesized via a microwave-assisted method. The product was calcinated at 900 ºC for 2h. At the second step zinc oxide shell was synthesized on the ferrite under ultrasonic waves. Properties of the product were examined by X-ray diffraction pattern (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Vibrating sample magnetometer (VSM) shows nanoparticles exhibit ferromagnetic behavior. The photo-catalytic behavior of MgFe2O4-ZnO nanocomposite was evaluated using the degradation of organic dyes aqueous solution under ultraviolet (UV) light irradiation. The results show that MgFe2O4-ZnO nanocomposites have applicable magnetic and photo-catalytic performance.


[1] G. Nabiyouni, D. Ghanbari, S. Karimzadeh, B. Samani-Ghalehtaki, J Nano Struc. 4 (2014) 467-474.
[2] J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassanabadi, M R Hosseini-Tabatabaei (in press 2015)  DOI 10.1007/s10854-015-3622-y
[3] H.R. Momenian, M. Salavati-Niasari, D. Ghanbari, B. Pedram, F. Mozaffar, S. Gholamrezaei, J Nano Struc. 4 (2014) 99-104.
[4] F. Zhang, S. Kantake, Y. Kitamoto, M. Abe, IEEE Trans. Magn. 35 (1999) 2751–2753.
[5] Y. Kitamoto, S. Kantake, S. Shirasaki, F. Abe, M. Naoe, J. Appl. Phys. 85 (1999) 4708-4710.
[6] A.E. Berkowitz, W. Schuele, J. Appl. Phys. 30 (1959) 134–135.
[7]. D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Koch, J Indus Eng Chem. 20 (2014) 3970-3974.
[8] K. Maaz, A. Mumtaz, S.K. Hasanain, A. Ceylan, J. Magn. Magn. Mater 308 (2007) 289-295.
[9] X. Chu, D. Jiang, Y. Guo, C. Zheng, Sens. Actuator B. 120 (2006) 177.-181.
[10] C.C. Wang, I.H. Chen, C.R. Lin, J. Magn. Magn. Mater. 304 (2006) 451-453.
[11] Y.I. Kim, D. Kim, C.S. Lee, Phys. B 337 (2003) 42-51.
[12] Y. Shi, J. Ding, H. Yin, J. Alloys Compd. 308 (2000) 290-295.
[13] S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J Indus Eng Chem. 20 (2014) 3335-3341.
[14] P. Jamshidi, M. Salavati-Niasari, D. Ghanbari, H.R. Shams, J Clust Sci. 24 (2013) 1151-1162.
[15] S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, J Indus Eng Chem. 20 (2014) 4000-4007.
[16] H.R. Momenian, S. Gholamrezaei, M. Salavati-Niasari, B. Pedram , F. Mozaffar , D. Ghanbari, J Clust Sci. 24 (2013) 1031-1042.
[17] A. Esmaeili-Bafghi-Karimabad, D. Ghanbari, M. Salavati-Niasari, L. Nejati-Moghadam, S. Gholamrezaei, J. Mater. Sci. Mater. Electron. 26 (2015) 6970-6977.
[18] L. Nejati-Moghadam, D. Ghanbari, M. Salavati-Niasari, A. Esmaeili-Bafghi-Karimabad , S. Gholamrezaei, J. Mater. Sci. Mater. Electron. 26 (2015) 6075-6083.