Synthesis of MWCNTs Using Monometallic and Bimetallic Combinations of Fe, Co and Ni Catalysts Supported on Nanometric SiC via TCVD

Document Type : Research Paper


Department of Solid state Physics, University of Mazandaran, Babolsar, 47416-95447, Iran.



Nanometric Carbid Silicon (SiC) supported monometallic and bimetallic catalysts containing Fe, Co, Ni transition metals were prepared by wet impregnation method. Multiwall carbon nanotubes (MWCNTs) were synthesized over the prepared catalysts from catalytic decomposition of acetylene at 850°C by thermal chemical vapor deposition (TCVD) technique. The synthesized nanomaterials (catalysts and CNTs) were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Raman spectroscopy. In this paper, using of nanometric SiC powder as catalyst support was examined and the effect of applied catalyst type on characteristics of grown CNTs was investigated. The results revealed that iron, cobalt and nickel are in oxide, cobalt ferrite (CoFe2O4) and nickel ferrite (NiFe2O4) forms and nanometric SiC powder can be applied as an appropriate catalyst support in CNT growth process. It was observed that the produced CNTs on bimetallic Fe-Co possess smaller average diameter, less amorphous carbon and denser morphology compared to other binary metallic combinations. It was found that the catalytic activity of bimetallic composition decreased in the order of Fe-Co> Fe-Ni> Co-Ni. Furthermore, the monometallic Fe catalyst has the most catalytic activity compared to monometallic Co and Ni catalysts.


[1] S. Iijima, nature 354 (1991) 56-58.
[2] X. Hu, S. Cook, P. Wang, H. M. Hwang, X. Liu,  Q. L. Williams, Sci. Total Environ. 408 (2010) 1812-1817.
[3] R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Sci. 297 (2002) 787-792.
[4] R. H. Baughman, Sci. 300 (2003) 268-269.
[5] X. Li, H. Zhu, B. Jiang, J. Ding, C. Xu, D. Wu, Carbon 41 (2003) 1664-1666.
[6] W. Jiang, P. Molian, H. Ferkel, J. manuf. Sci. Eng. 127 (2005) 703-707.
[7] C. J. Lee, S. C. Lyu, Y. R. Cho, J. H. Lee, K. I. Cho, Chem. Phys. Lett. 341 (2001) 245-249.
[8] G. Gulino, R. Vieira, J. Amadou, P. Nguyen, M. J. Ledoux, S. Galvagno, C. Pham-Huu, Appl. Catal. A: Gen. 279 (2005)  89-97.
[9] G. H. Jeong, N. Olofsson, L. K. Falk, E. E. Campbell, Carbon 47 (2009)  696-704.
[10] M. Kumar, Y. Ando, J. Nanosci. nanotechno. 10 (2010) 3739-3758.
[11] S. D. Ali, S. T. Hussain, S. R. Gilani, Appl. Surf. Sci. 271 (2013) 118-124.
[12] L. Ci, Z. Ryu, N. Y. Jin-Phillipp, M. Rühle, Diam. Relat. Mater. 16 (2007) 531-536.
[13] T. Murakami, T. Sako, H. Harima, K. Kisoda, K. Mitikami, T. Isshiki, Thin solid films 464 (2004) 319-322.
[14] S. Zhan, Y. Tian, Y. Cui, H. Wu, Y. Wang, S. Ye, Y. Chen, China Particuology 5 (2007) 213-219.
[15] C. Klinke, J. M. Bonard, K. Kern, Surf. Sci. 492 (2001) 195-201.
[16] K. Hernadi, A. Fonseca, J. B. Nagy, A. Siska, I. Kiricsi, Appl. Catal. A: gen. 199 (2000) 245-255.
[17] R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, R. J. Waite, J. catal. 26 (1972) 51-62.
[18] R. T. K. Baker, R. J. Waite, J. Catal. 37 (1975) 101-105.
[19] H. Hiura, T. W. Ebbesen, K. Tanigaki, H. Takahashi, Chem. Phys. Lett. 202 (1993) 509-512.
[20] M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409 (2005) 47-99.
[21] S. Botti, R. Ciardi, L. Asilyan, L. D. Dominicis, F. Fabbri, S. Orlanducci, A. Fiori, Chem. Phys. Lett. 400 (2004) 264-267.