Enhancement of Pseudomonas Aeruginosa Growth and Rhamnolipid Production Using Iron-Silica Nanoparticles in Low-Cost Medium

Document Type : Research Paper

Authors

Environmental Research Centre in Petroleum and Petrochemical Industries, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran

Abstract

The application of iron-silica (Fe-Si) nanoparticles for the enhancement of the Pseudomonas aeruginosa growth and rhamnolipid production in molasses medium was studied. The experiments were designed based on the response surface method (RSM) to optimize growth and rhamnolipid production. The concentration of nanoparticles and the time required to add nanoparticles to culture medium were considered as independent variables. The dry weight of cell, the dry weight of rhamnolipid and the surface tension were measured as response variables. In addition, to determine a basic and low-cost medium, the concentrations of molasses and NaCl as components of medium were optimized by RSM. The optimum medium was estimated to include 15% of molasses without NaCl. The results showed that the highest increase in the growth of P. aeruginosa is 25% which occurred at 600 mg/L of nanoparticles and 18 h of addition time compared to the free-nanoparticles experiment. In the same way, the highest increase in rhamnolipid production was 57% at 1 mg/L of nanoparticles and 6 h of addition time compared to blank experiment. TEM images of the morphology changes of bacteria demonstrated the permeation of nanoparticles into the inbound cells. Results of this study reveal the great potential of Fe-Si nanoparticles to overcome the difficulties of the rhamnolipid production in industrial scale.
 

Keywords


1. Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopade BA. Methods for investigating biosurfactants and bioemulsifiers: a review. Crit. Rev. Biotechnol. 2010;30(2):127-44.
2. Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ. Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour. Technol. 2008;99(1):195-9.
3. Behary N, Perwuelz A, Campagne C, Lecouturier D, Dhulster P, Mamede A. Adsorption of surfactin produced from Bacillus subtilis using nonwoven PET (polyethylene terephthalate) fibrous membranes functionalized with chitosan. Colloids Surf., B. 2012;90:137-43.
4. Mouafi FE, Elsoud MMA, Moharam ME. Optimization of biosurfactant production by Bacillus brevis using response surface methodology. Biotechnol. Rep. 2016;9:31-7.
5. Youssef NH, Wofford N, McInerney MJ. Importance of the long-chain fatty acid beta-hydroxylating cytochrome P450 enzyme YbdT for lipopeptide biosynthesis in Bacillus subtilis strain OKB105. Int. J. Mol. Sci. 2011;12(3):1767-86.
6. Kryachko Y, Nathoo S, Lai P, Voordouw J, Prenner EJ, Voordouw G. Prospects for using native and recombinant rhamnolipid producers for microbially enhanced oil recovery. Int. Biodeterior. Biodegrad. 2013;81:133-40.
7. Liu J, Vipulanandan C, Cooper TF, Vipulanandan G. Effects of Fe nanoparticles on bacterial growth and biosurfactant production. J. Nanopart. Res. 2013;15(1):1-13.
8. Kiran GS, Nishanth LA, Priyadharshini S, Anitha K, Selvin J. Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A. BMC Biotech. 2014;14(1):48.
9. Nezahat B, Nebahat D, Dilhan M. Conversion of biomass to fuel: transesterification of vegetable oil to biodiesel using KF loaded nano-g-Al 2 O 3 as catalyst. Appl Catal B. 2009;89:590-6.
10. El-Sheshtawy H, Khalil N, Ahmed W, Abdallah R. Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles. Mar. Pollut. Bull. 2014;87(1):191-200.
11. Wehrli B, Sulzberger B, Stumm W. Redox processes catalyzed by hydrous oxide surfaces. Chem. Geol. 1989;78(3):167-79.
12. Auffan M, Achouak W, Rose J, Roncato M-A, Chanéac C, Waite DT, et al. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ. Sci. Technol. 2008;42(17):6730-5.
13. Kiran GS, Thomas TA, Selvin J. Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Colloids Surf., B. 2010;78(1):8-16.
14. Haferburg G, Kothe E. Microbes and metals: interactions in the environment. J. Basic Microbiol. 2007;47(6):453-67.
15. Jo W, Freedman KJ, Kim MJ. Metallization of biologically inspired silica nanotubes. Mater. Sci. Eng., C. 2012;32(8):2426-30.
16. Hendraningrat L, Li S, Torsæter O. A coreflood investigation of nanofluid enhanced oil recovery. J. Pet. Sci. Eng. 2013;111:128-38.
17. Marchant R, Banat IM. Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol. Lett. 2012;34(9):1597-605.
18. Yela ACA, Martínez MAT, Piñeros GAR, López VC, Villamizar SH, Vélez VLN, et al. A comparison between conventional Pseudomonas aeruginosa rhamnolipids and Escherichia coli transmembrane proteins for oil recovery enhancing. Int. Biodeterior. Biodegrad. 2016;112:59-65.
19. Tahseen R, Afzal M, Iqbal S, Shabir G, Khan QM, Khalid ZM, et al. Rhamnolipids and nutrients boost remediation of crude oil-contaminated soil by enhancing bacterial colonization and metabolic activities. Int. Biodeterior. Biodegrad. 2016;115:192-8.
20. Hassan M, Essam T, Yassin AS, Salama A. Optimization of rhamnolipid production by biodegrading bacterial isolates using Plackett–Burman design. Int. J. Biol. Macromol. 2016;82:573-9.
21. Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 2005;39(5):1338-45.
22. Wang J, Liu Q. Structural change and characterization in nitrogen-incorporated SBA15 oxynitride mesoporous materials via different thermal history. Microporous and mesoporous materials. 2005;83(1):225-32.
23. Saad R, Thiboutot S, Ampleman G, Dashan W, Hawari J. Degradation of trinitroglycerin (TNG) using zero-valent iron nanoparticles/nanosilica SBA-15 composite (ZVINs/SBA-15). Chemosphere. 2010;81(7):853-8.
24. Sharma A, Soni J, Kaur G, Kaur J. A Study on biosurfactant production in Lactobacillus and Bacillus sp. Int J Curr Microbiol App Sci. 2014;3(11):723-33.
25. Cooper DG, Goldenberg BG. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 1987;53(2):224-9.
26. Diniz Rufino R, Moura de Luna J, de Campos Takaki GM, Asfora Sarubbo L. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron. J. Biotechnol. 2014;17(1):6-.
27. Mostafa NY, Al-Wakeel SAS, El-Korashy SA, Brown PW. Characterization and evaluation of the pozzolanic activity of Egyptian industrial by-products: I: Silica fume and dealuminated kaolin. Cem. Concr. Res. 2001;31(3):467-74.
28. Zhang JL SR, Misra RDK. Core-Shell Magnetite Nanoparticles Surface Encapsulated with Smart Stimuli-Responsive Polymer: Synthesis, Characterization, and LCST of Viable Drug-Targeting Delivery System. Langmuir. 2007;23:6342-51.
29. Al-Bahry S, Al-Wahaibi Y, Elshafie A, Al-Bemani A, Joshi S, Al-Makhmari H, et al. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int. Biodeterior. Biodegrad. 2013;81:141-6.
30. Dubey K, Juwarkar A. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World J. Microbiol. Biotechnol. 2001;17(1):61-9.
31. Kiran GS, Hema T, Gandhimathi R, Selvin J, Thomas TA, Ravji TR, et al. Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. World J. Microbiol. Biotechnol. 2009;73(2):250-6.
32. Lawrance A, Balakrishnan M, Joseph TC, Sukumaran DP, Valsalan VN, Gopal D, et al. Functional and molecular characterization of a lipopeptide surfactant from the marine sponge-associated eubacteria Bacillus licheniformis NIOT-AMKV06 of Andaman and Nicobar Islands, India. Mar. Pollut. Bull. 2014;82(1):76-85.
33. Reis RS, Da Rocha SLG, Chapeaurouge DA, Domont GB, Santa Anna LMM, Freire DMG, et al. Effects of carbon and nitrogen sources on the proteome of Pseudomonas aeruginosa PA1 during rhamnolipid production. Process Biochem. 2010;45(9):1504-10.
34. Huang X, Shen C, Liu J, Lu L. Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants. Chem. Eng. J. 2015;264:280-90.
35. Shan G, Xing J, Zhang H, Liu H. Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl. Environ. Microbiol. 2005;71(8):4497-502.
36. Ehrlich H. Microbes and metals. Appl. Microbiol. Biotechnol. 1997;48(6):687-92.
37. Liu J, Vipulanandan C. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant. Mater. Sci. Eng., C. 2013;33(7):3909-15.
38. Devi LS, Joshi SR. Evaluation of the antimicrobial potency of silver nanoparticles biosynthesized by using an endophytic fungus, Cryptosporiopsis ericae PS4. J. Microbiol. 2014;52(8):667-74.
39. Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Povey M, et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res. 2010;12(5):1625-36.
40. Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 2010;3(1):3-8.
41. Choi O, Yu C-P, Fernández GE, Hu Z. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res. 2010;44(20):6095-103.
42. Cecchin I, Reddy KR, Thomé A, Tessaro EF, Schnaid F. Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int. Biodeterior. Biodegrad. 2016.
43. Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E. Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chemosphere. 2016;144:352-9.
44. Tang YJ, Ashcroft JM, Chen D, Min G, Kim C-H, Murkhejee B, et al. Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Lett. 2007;7(3):754-60.
45. Espinosa-Cristóbal L, Martínez-Castañón G, Martínez-Martínez R, Loyola-Rodríguez J, Patiño-Marín N, Reyes-Macías J, et al. Antimicrobial sensibility of Streptococcus mutans serotypes to silver nanoparticles. Mater. Sci. Eng., C. 2012;32(4):896-901.
46. Dehner C, Morales-Soto N, Behera RK, Shrout J, Theil EC, Maurice PA, et al. Ferritin and ferrihydrite nanoparticles as iron sources for Pseudomonas aeruginosa. JBIC Journal of Biological Inorganic Chemistry. 2013;18(3):371-81.
47. Sansinenea E, Ortiz A. Secondary metabolites of soil Bacillus spp. Biotechnol. Lett. 2011;33(8):1523-38.
48. Ismail W, Al-Rowaihi IS, Al-Humam AA, Hamza RY, El Nayal AM, Bououdina M. Characterization of a lipopeptide biosurfactant produced by a crude-oil-emulsifying Bacillus sp. I-15. Int. Biodeterior. Biodegrad. 2013;84:168-78.
49. Bordoloi N, Konwar B. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. C Colloids Surf., B. 2008;63(1):73-82.
50. Liu Q, Lin J, Wang W, Huang H, Li S. Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem. Eng. J. 2015;93:31-7.
51. Ayed HB, Jemil N, Maalej H, Bayoudh A, Hmidet N, Nasri M. Enhancement of solubilization and biodegradation of diesel oil by biosurfactant from Bacillus amyloliquefaciens AN6. Int. Biodeterior. Biodegrad. 2015;99:8-14.