[1] A.S. Moffat, Science 272 (1996) 21.
[2] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Japanese Journal of Applied Physics Part 2 Letters 45 (2006) L638.
[3] M.-W. Ho, Quantum dots and ultra-efficient solar cells, Institute of Science in Society.[Online Article]. Available: Http://www. I-sis. Org. uk/QDAUESC. Php. (2006).
[4] A. Ward, P. Hausher, Quantum Dots: The Future of Highly-Efficient Solar Cells, n.d.
[5] I. Robel, V. Subramanian, M. Kuno, P. Kamat, J. Am. Chem. Soc. 128 (2006) 2385–2393.
[6] P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion, J. Phys. Chem. C. 111 (2007) 2834– 2860.
[7] A. P. Alivisatos, Science. 271 (1996) 933–937.
[8] M. Nirmal, L. Brus, Acc. Chem. Res., 32 (1999) 407–414.
[9] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Nature. 370 (1994) 354–357.
[10] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science. (2002).
[11] S. Kumar, Z.H. Khan, M.A. Majeed Khan, M. Husain, Curr. Appl. Phys. 5 (2005) 561–566.
[12] L. Bakueva, I. Gorelikov, S. Musikhin, X.S. Zhao, E.H. Sargent, E. Kumacheva, Adv. Mater. 16 (2004) 926–929.
[13] H. Hirata, K. Higashiyama, Bull. Chem. Soc. Jpn. 44 (1971) 2420–2423.
[14] R. Debnath, J. Tang, D. A. Barkhouse, X. Wang, A. G. Pattantyus-Abraham, L. Brzozowski, L. Levina, E. H. Sargent, J. Am. Chem. Soc. 132 (2010) 5952–5953.
[15] H. Lee, H. C. Leventis, S. Moon, P. Chen, S. Ito, S. A. Haque, T. Torres, F. Nu¨ esch, T. Geiger, S. M. Zakeeruddin, M. Grätzel, M. K. Nazeeruddin, Adv. Funct. Mater. 19 (2009) 2735–2742.
[16] J.Tang, X. Wang, L. Brzozowski, D. Aaron, R. Barkhouse, R. Debnath, L. Levina, E.H. Sargent, Adv. Mater. 22 (2010) 1398–1402. [14] P.K. Nair, V.M. Garcia, A.B. Hernandez, M.T.S. Nair, J. Phys. D: Appl. Phys. 24 (1991) 1466–1472.
[17] A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M Gratzel, E. H. Sargent, ACS Nano. 4 (2010) 3374–3380.
[18] P.K. Nair, O. Gomezdaza, M.T.S. Nair, Adv. Mater. Opt. Electron. 1 (1992) 139–145.
[19] J.J. Valenzuela-Jauregui, R. Ramirez-Bon, A. Mendoza-Galvan, M. Sotelo-Lerma, Thin Solid Films. 441 (2003) 104–110.
[20] E. Nykanen, J. Laine-Ylijoki, P. Soininen, L. Niinisto, M. Leskela, L.G. Hubert- Pfalzgraf, J. Mater. Chem. 4 (1994) 1409–1412.
[21] M. Ichimura, T. Narita, K. Masui, Mater. Sci. Eng. B. 96 (2002) 296–299.
[22] T. Kanniainen, S. Lindroos, J. Ihanus, M. Leskela, J. Mater. Chem. 6 (1996) 161–164.
[23] M. Takahashi, Y. Ohshima, K. Nagata, S. Furuta, J. Electroanal. Chem. 359 (1993) 281–286.
[24] M. Sharon, K.S. Ramaiah, M. Kumar, M. Neumann-Spallart, C. Levy-Clement, J. Electroanal. Chem. 436 (1997) 49–52.
[25] B. Scharifker, Z. Ferreira, J. Mozota, Electrochim. Acta. 30 (1985) 677–682.
[26] M. Alanyalıoglu, F. Bayrakceken, U. Demir, Electrochim. Acta. 54 (2009) 6554–6559.
[27] H. Saloniemi, M. Ritala, M. Leskela, R. Lappalainen, J. Electrochem. Soc. 146(1999)2522-252.
[28] M. A. Hines, G. D. Scholes, Adv. Mater. 15 (2003) 1848–1849.
[29] J. M. Luther, M. Law, Q. Song, C. L. Perkins, M. C. Beard, and A. J. Nozik, Acs Nano, 2 (2008) 271–280.
[30] L. F. Sun, L. Bao, B. R. Hyun, A. C. Bartnik, Y. W. Zhong, J. C. Reed, D. W. Pang, H. D. Abruna, G. G. Malliaras, F. W. Wise, Nano Lett. 9 (2009) 789–793.
[31] W. L. Ma, J. M. Luther, H. M. Zheng, Y. Wu, A. P. Alivisatos, Nano Lett. 9(2009)1699–1703.
[32] J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, A. J. Nozik, Adv. Mater. 22 (2010) 3704–3707.
[33] E.J.D. Klem, D.D. MacNeil, P.W. Cyr, L. Levina, E.H. Sargent, Appl. Phys. Lett. 90 (2007) 183113-183113.
[34] S. Emin, S.P. Singh, L. Han, N. Satoh, A. Islam, Solar Energy. 85 (2011) 1264–1282.