[1] Lee S, Ha KP. Dual pH and temperature responsive hydrogels based on â-cyclodextrin derivatives for atorvastatin delivery. Polymer(Korea). 2015; 39: 300-306.
[2] Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res. 2008; 10: 507-517.
[3] Zhao X, Xi Y, Li Q, Ma X, Quan F, Geng C, Han Zh. Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Coll Surf A: Physicochem Eng Asp. 2014; 444: 180-188.
[4] Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009; 27: 76-83.
[5] Wang L, Ren J, Zhang X, Yang X, Yang W, Synthesis and characterization of pH-sensitive and self-oscillating IPN hydrogel in a pH oscillator. Polymer(Korea). 2015; 39: 359-364.
[6] Wang H, Qiao X, Chen J, Ding S. Preparation of silver nanoparticles by chemical reduction method. Coll Surf A: Physicochem Eng Asp. 2005; 256: 111-115.
[7] Xia NX, Cai YR, Jiang T, Yao JM. Green synthesis of silver nanoparticles by chemical reduction with hyaluronan. Carbohydr Polym. 2011; 86: 956-961.
[8] Fanta GF, Kenar JA, Felker FC, Byars JA, Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes. Carbohydr Polym. 2013; 92: 260-268.
[9] Sakai H, Kanda T, Shibata H, Ohkubo T, Abe M. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle. J Am Chem Soc. 2006: 128: 4944-4945.
[10] Zaheer Z. Multi-branched flower-like silver nanoparticles: preparation and characterization. Coll Surf A: Physicochem Eng Asp. 2011; 384: 427-431.
[11] Medina-Ramirez I, Bashir S, Luo Z, Liu JL, Green synthesis and characterization of polymer-stabilized silver nanoparticles. Coll Surf B: Biointerfaces. 2009; 73: 185-191.
[12] Wei DW, Sun WY, Qian WP, Ye YZ, Ma XY. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res. 2009; 344: 2375-2382.
[13] Kassaee MZ, Akhavan A, Sheikh N, Beteshobabrud R. م-Ray synthesis of starch-stabilized silver nanoparticles with antibacterial activities. Radiat Phys Chem. 2008; 77: 1074-1078.
[14] Lv X, Yang S, Jin J, Zhang L, Li G, Jiang J. Microwave absorbing characteristics of epoxy composites containing carbon black and carbon fibers (in Korean). Polymer(Korea). 2009; 33: 420-428.
[15] Yi CF, Deng ZW, Xu ZS. Development of studies on polymerization by microwave irradiation. Polym Bull. 2004; 1: 30-36.
[16] Bilecka I, Elser P, Niederberger M. Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. ACS Nano. 2009; 3: 467-477.
[17] Zhu JF, Zhu YJ, Ma MG, Yang LX, Gao L. Simultaneous and rapid microwave synthesis of polyacrylamide-metal sulfide (Ag2S, Cu2S, HgS) nanocomposites. J Phys Chem. C 2007; 111: 3920-3926.
[18] Hong SY, Lee JY. pH-Dependent dye adsorption and release behaviors of poly(ethylene-alt-maleic anhydride)/poly(4-vinyl pyridine) multiplayer films. Polymer(Korea). 2005; 29: 593-598.
[19] Bagheri Marandi G, Peyvand Kermani Z, Kurdtabar M. Fast and efficient removal of cationic dyes from aqueous solution by collagen-based hydrogel nanocomposites. Polym Plast Technol Eng. 2013; 52: 310-318.
[20] Zhao S, Zhou F, Li L, Cao M, Zuo D, Liu H. Removal of anionic dyes from aqueous solutions by adsorption of chitosan-based semi-IPN hydrogel composites. Composites: Part B. 2012; 43: 1570-1578.
[21] Oladipo AA, Gazi M, Saber-Samandari S. Adsorption of anthraquinone dye onto eco-friendly semi-IPN biocomposite hydrogel: equilibrium isotherms, kinetic studies and optimization. J Taiwan Inst Chem Eng. 2014; 45: 653-664.
[22] Abdel-Halim ES, Al-Deyab SS. Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles. Carbohydr Polym. 2011; 86: 1615-1622.
[23] Slokar YM, Le Marechal AM. Methods of decoloration of textile wastew-aters. Dyes Pigm. 1998; 37: 335-356.
[24] Madaeni SS, Jamali Z, Islami N. Highly efficient and selective transportof methylene blue through a bulk liquid membrane containing Cyanex 301 ascarrier. Sep Purif Technol. 2011; 81: 116-123.
[25] Chakraborty S, De S, DasGupta S, Basu JK. Adsorption study for the removal of a basic dye: experimental and modeling. Chemosphere. 2005; 58: 1079-1086.
[26] Ghorai S, Sarkar AK, Panda AB, Pal S. Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Biores Technol. 2013; 144: 485-491.
[27] Sarkar AK, Pal A, Ghorai S, Mandre NR, Pal S. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid). Carbohyd Polym. 2014; 111: 108-115.
[28] 28. Hosseinzadeh H, Khoshnood N. Removal of cationic dyes by poly(AA-co-AMPS)/montmorillonite nanocomposite hydrogel. Des Water Treat. 2015; 57: 6372–6383.
[29] Hosseinzadeh H, Mohammadi S. Quince seed mucilage magnetic nanocomposites as novel bioadsorbents for efficient removal of cationic dyes from aqueous solutions. Carbohyd Polym. 2015; 134: 213-221.
[30] Hosseinzadeh H, Zoroufi Sh, Mahdavinia GR. Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. Polym Bull. 2015; 72: 1339-1363.
[31] Abdel-Halim ES, Al-Deyab SS. Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles. Carbohydr Polym. 2011; 86: 1615-1622.
[32] Yang S, Wang Y, Wang Q, Zhang R, Ding B. UV irradiation induced formation of Au nanoparticles at room temperature: the case of pH values. Colloids Surf A Physicochem Eng Asp. 2007; 301: 174–183.
[33] Mohamadnia Z, Zohurian-Mehr MJ, Kabiri K, Jamshidi A, Mohebi H. Ionically cross-linked carrageenan-alginate hydrogel beads. J Biomater Sci Polym Ed. 2008; 19: 47-59.
[34] Durmaz S, Okay O. Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization. Polymer. 2000; 41: 3693-3704.
[35] Daneshvara M, Koushaa M, Jokarb N, Koutahzadehb N, Guibal E. Acidic dye biosorption onto marine brown macroalgae: isotherms, kinetic and thermodynamic studies. Chem Eng J. 2012; 204: 225-234.
[36] Singh KP, Mohan D, Sinha S, Tondon GS, Gosh D. Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Ind Eng Chem Res 2003; 42: 1965-1971.
[37] Mittal A, Mittal J, Malviya A, Gupta VK. Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J Colloid Interface Sci. 2009; 340: 16-21.
[38] Gucek A, Sener S, Bilgen S, Mazmanci ML. Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions. J Colloid Interf Sci. 2005; 286: 53-63.
[39] Nandi BK, Goswami A, Das AK, Mondal B, Purkait MK. Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent. Sep Sci Technol. 2008; 43: 1382-1403.
[40] Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol. 2011; 39: 77-85.