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In this study, a biodegradable absorbent material based on guar gum (GG) 
was developed by grafting a copolymer mixture of acrylic acid (AA) and 
polyacrylamide (PAM), GG-g-poly (AC-co-PAM) was prepared using a 
free radical method with potassium persulfate (KPS) as the initiator and 
N, N-methylene diacrylamide (MBA) as the crosslinker. The hydrogel 
exhibited the highest swelling capacity when formulated with GG (1.0 g), 
PAM (0.5 g), and AC (0.05 g) as monomers, 0.08 g of MBA, and 0.05 g of 
KPS, at a pH of 7.0 and a reaction temperature of 75°C. The maximum 
swelling percentage achieved was 2200%. Hydrogel characterization 
involved several techniques, including transmission electron microscopy 
(TEM), field-emission scanning electron microscopy (FE-SEM) with 
energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared 
spectroscopy (FT-IR), thermogravimetric analysis (TGA), Brunauer-
Emmett-Teller (BET) analysis, and X-ray diffraction (XRD). The TEM 
image revealed a wrinkled morphology of the hydrogel, while FESEM 
analysis showed its porous nature, which is capable of accumulating a large 
number of water and dye molecules. The synthesized hydrogel exhibited 
high stability in aqueous solution and zero-point charge at a pH above 4.3. 
The hydrogel absorbent can be easily regenerated through a dilute acid 
wash, with minimal loss of absorbent performance even after four cycles of 
absorption and desorption. Therefore, this study confirms the effectiveness 
of using hydrogel as an effective absorbent for removing hazardous and 
toxic dyes.

INTRODUCTION
Textile dyes are currently a source of concern 

for water pollution and pose a risk to all aquatic 
organisms. This is due to their widespread use in 
various textile industries, including plastics and 
paper, among others[1-3]. They pose a threat to 
human life because they block light, thus reducing 
the photosynthesis process in plants. Given these 

serious problems, it is essential to address them. 
Therefore, it is necessary to remove pollutants 
from wastewater for environmental, health, and 
economic reasons. Several technologies have 
been developed to remove contaminants from 
wastewater, including ozonation and oxidation, 
coagulation and flocculation, photolysis, and 
membrane separation. However, most of these 
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traditional methods have begun to prove 
insufficient for simple and effective treatment 
and are expensive[4, 5]. This necessitates 
the consideration of effective and affordable 
technologies to remove various types of pollutants 
from water. Adsorption is one of the most 
important and effective methods for removing 
impurities. Inexpensive adsorbents, such as 
hydrogels, can effectively remove dyes from water 
[6, 7].

Hydrogels, classified as three-dimensional, 
hydrophilic polymers, are utilized in a wide range of 
hydrophilic applications and systems. The presence 
of hydrophilic groups on the hydrogel surface not 
only enables hydrogels to absorb large amounts 
of water but also influences their properties, 
including permeability, biocompatibility, and 
stability[8-10]. Due to their highly porous nature 
and smooth texture, hydrogels are highly suitable 
for loading water-soluble materials. Guar gum (GG) 
is a naturally occurring polysaccharide with high 
porosity and an active ingredient that promotes 
swelling. The use of guar gum has recently seen 
widespread interest, particularly in textile, paper, 
and medical applications for wound healing and 
pharmaceutical applications. It is also a natural 
sugar that retains its biodegradability due to 
its gummy nature while exhibiting enhanced 
properties suitable for various applications, most 
notably wastewater treatment[11-14].

In this study, a facile and inexpensive hydrogel 
based on guar gum (GG) was prepared using a 
graft co-polymerization method, incorporating a 
mixture of acrylic acid (AC) and acrylamide (AM) 
monomers. The adsorption efficiency of the 
synthesized hydrogel for removing the cationic 
methyl violet (MV) dye from aqueous solutions 
was investigated. Additionally, the effects of 
equilibrium time, hydrogel weight, MV dye 
concentration, pH, and zero-point charge (ZPC) on 
the dye removal efficiency were investigated. The 
regeneration process in relation to adsorption was 
also studied.

MATERIALS AND METHODS 
Preparation of GG-g-poly(AC-co-PAM) Hydrogel

GG-g-poly (AC-co-PAM) hydrogel was prepared 
through a free radical grafting copolymerization 
process of acrylic acid (AC) and acrylamide (AM) 
using guar gum (GG) as a natural polymer. The 
preparation process involved dissolving 1.0 g of GG 
in 50 mL of distilled water to form a homogeneous 

solution, which was stirred continuously with a 
magnetic stirrer for 3 hours in a 100 mL beaker. A 
mixture of AM and AC was mixed in this solution 
(0.5 g). Potassium persulfate (KPS) was added at 
a concentration of 0.05 g as an initiator, and N, 
N-methylene-MBA diacrylamide (0.08 g) was used 
as a cross-linking agent. After 3 hours, the former 
gel was washed several times in distilled water 
to remove any unreacted monomers and then 
washed once with ethanol. Finally, the prepared 
hydrogel was dried for 2 days in an oven operating 
at 60°C.

Adsorption study
To prepare a standard solution of the dye with 

concentrations ranging from 10 to 100 mg/L, the 
stock solution of MV dye was diluted to the desired 
levels. For batch mode adsorption tests, 100 mL 
conical flasks were filled with 0.05 g of adsorbent 
and 100 mL of the prepared dye solution, 
maintaining an initial pH of 7. The flasks were 
shaken at 120 rpm for 1 hour at a temperature of 
25±2°C using a mechanical shaker. After agitation, 
centrifugation was performed to separate the 
adsorbent from the adsorbate. The dye content 
in the supernatant was then measured using 
spectrophotometry at a wavelength of 586 nm.

Experiments were conducted at a constant 
dye concentration of 100 mg/L, with varying 
carbon dosages from 0.01 to 0.1 g per 100 mL, to 
investigate the effect of hydrogel dosage on the 
percentage of dye elimination. Additionally, the 
impact of dye concentration on the elimination 
percentage was investigated, with MV dye 
concentrations ranging from 10 to 100 mg/L, while 
maintaining a consistent adsorbent dosage of 0.05 
g per 100 mL.  The following equations calculate 
the adsorption efficiency and removal percentage: 

adsorption capacity(Qe m
g )  = (Co − Ce)V

m(g)  

  

removal effecincy E % = Co − Ce
Co

× 100 

RESULTS AND DISCUSSION
Fig. 1 presents the FTIR spectra of the hydrogel 

adsorbent before and after adsorption. The broad 
peaks observed around 3427 cm⁻¹ are indicative 
of O-H stretching vibrations from hydroxyl groups. 
Notably, the spectrum shows a significant presence 
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of peaks in the 3300–3500 cm⁻¹ range, a finding 
that aligns with previous studies on hydrogel. 
Additionally, the broad peak at approximately 
3427 cm⁻¹ can be attributed to the stretching 
vibrations of -OH groups. The presence of these 
peaks suggests that the synthesized hydrogel 
is rich in functional groups, confirming the 
formation of hydrogen bonding between them, as 
demonstrated by the slight shifts observed in the 
N-H, O-H, and C-O functional groups[15].

The (FE-SEM) technique, as illustrated in Fig. 
2a, is used to examine the properties of the 
hydrogel before and after the adsorption process. 
This technique provides valuable insights into 
the crystalline structure of the particles, their 
shape, the nature of their aggregation, and their 
surface area[16]. It also helps in evaluating surface 
porosity or smoothness, as well as the uniformity 
of hydrogel distribution on the surface. The 
FESEM images presented in Fig. 2b indicate that 
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Fig. 1. FTIR spectra of the hydrogel adsorbent before and after adsorption.

Fig. 2. FES-EM analysis of a) hydrogel before adsorption, b) hydrogel after adsorption.
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the hydrogel surface, after adsorption, appears 
smooth, clear, and flaky. Additionally, it exhibits 
a sponge-like porous structure characterized by 
a network of tightly packed layers and numerous 
irregularly arranged wrinkles. Notably, after 
the adsorption process, the sample’s surface 
morphology undergoes significant changes, 
including a marked increase in surface roughness 
and porosity. This results in an irregular structure 
that binds the layers of hydrogel together through 

van der Waals forces [17].
Transmission Electron Microscopy (TEM) 

images reveal the morphology of the surface 
hydrogel. As shown in Fig. 3, the cloudiness of the 
surface is more pronounced, and a new geometry 
is created after decorating the hydrogel with GG. 
This change may be attributed to the amount of 
GG used. The imaging shows that GG exhibits a 
spherical shape, with irregular balls and some 
patchy shapes present. Additionally, a tendency 
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Fig. 3. TEM images of the hydrogel surface.

Fig. 4. X-ray diffraction (XRD) of hydrogel micro/nanosyrface.
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to form chain-like structures is observed at a scale 
of 50 nm. Additionally, the hydrogel surface is 
covered by a transparent layer, within which GG is 
embedded [18].

X-ray diffraction (XRD) is employed to investigate 
the crystal phases and purity of nanomaterials. 
Fig. 4 shows the XRD patterns of the hydrogel. 
The results indicate a non-crystalline structure for 
the hydrogel. A broad peak at 2θ = 22.141° and 
another at 2θ = 33.22° suggest a transition from an 
amorphous state to a semicrystalline nature[19].

The TGA revealed a limitation in the thermal 
stability of the hydrogel (Fig. 5). A loss of weight 
in the hydrogel patterns was observed. A loss of 
weight from 60 to 200°C, equivalent to 12.133 
%, occurred, consistent with the evaporation of 
water from the hydrogel.  A significant weight 
loss of 43.677% was attributed to crosslink 
decomposition and the elimination of CO2 from 
the hydrogel structure at temperatures ranging 
from 300 to 560 °C. This also designated a loss of 
amide and hydroxyl groups in the structure. Final 
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Fig. 6. Effect of contact time on removal of MV dye by hydrogel.

Fig. 5. TGA analysis of hydrogel.
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decomposition, occurring between 560 and 600 
°C, resulted in a loss of weight[20]. 

BET experiments were conducted to investigate 
the impact of hydrogel inclusion on the surface 
area and pore volume of the gel matrix in the 
hydrogel composite. The composite’s BET surface 
area, pore volume, and pore diameter were 0.233 

m2/g, 0.00122 cm3/g, and 399.32 Å, respectively.
[21]

Effect of contact time
A 100 mL solution of methyl violet (MV) dye 

at a concentration of 100 mg/L is prepared and 
placed in a conical flask. The solution is mixed with 
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Fig. 8. Effect of pH solution on removal of MV dye by hydrogel.

Fig. 7. Effect of weight of hydrogel on the removal of MV dye.
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an adsorbent concentration of 0.05 g per 100 mL 
of hydrogel at a temperature of 25°C and shaken 
at a speed of 220 rpm. This setup is maintained 
in a temperature-controlled water bath. The 
concentration of the MV dye is measured 
spectrophotometrically at the wavelength 
corresponding to its maximum absorbance 
(λmax) using a double-beam UV-visible 
spectrophotometer. Samples are taken at various 
time intervals, ranging from 5 to 60 minutes, and 
a centrifugation process is used to separate them. 
The absorbance of each solution is measured, and 
the dye concentration is determined at intervals 
of 5 to 60 minutes until equilibrium is reached[22, 
23] (Fig. 6).

Effect of weight of hydrogel 
The increase in the removal percentage of MV 

dye removal with increasing hydrogel weight was 
primarily attributed to the rise in the surface area 
of the adsorbent, which enhances the number 
of active sites available for dye adsorption, as 
reported elsewhere. Dye removal increased with 
increasing hydrogel weight due to the introduction 
of more active sites on the surface. The primary 
influence explaining this property is that the 
adsorption sites remain unsaturated during the 
adsorption reaction, while the number of available 
adsorption sites increases with the weight of the 
hydrogel. As the weight increased from 0.01 to 
0.1 g, the percentage of MV dye removal rose 
from 72.77% to 98.66% [24, 25]. Conversely, the 
adsorption capacity decreased from 350 to 1100 

mg/g on the hydrogel after approximately one 
hour of adsorption time (Fig. 7).

Effect of pH 
The equilibrium sorption capacity of methylene 

violet (MV) dye on hydrogel is minimal in basic 
conditions at pH 10. At this pH level, the adsorption 
capacity (Qe, mg/g) of the hydrogel is 32.44 mg/g, 
demonstrating that it is an effective adsorbent 
for removing MV dye from large volumes of 
aqueous solutions. As the pH increases beyond 
7, the adsorption capacity (Qe, mg/g) of MV dye 
on the hydrogel rises with the increasing pH. The 
enhanced adsorption of the dye at acidic pH levels 
is likely due to the presence of excess H+ ions, 
which compete with the cationic groups of the dye 
for available adsorption sites.[26, 27]. At higher pH 
levels, the surface may become positively charged, 
enhancing the attraction of the negatively charged 
dye anion through electrostatic forces as shown in 
Fig. 8.

Effect of zero-point charge 
The pH drift way was used for estimating the 

pH pzc. Typically, the pH pzc is the point where 
the curve of pH final versus pH initial intersects 
the line pH initial = pH final, with a value of 4.2 
for the nanocomposite (Fig. 6). At pH < pH pzc, the 
nanocomposite hydrogel displays a net positive 
charge, whereas at pH  >  pH pzc the surface is 
negatively charged. At alkaline pHs (pH > pH 
zpc), the amount of OH- ions in the aqueous 
solution increases, and the functional groups in 
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Fig. 9. Effect of zero-point charge of hydrogel surface.
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the adsorber’s structure have a negative charge, 
which can be effective in the process of eliminating 
pollutants. [28, 29](Fig. 9).

Effect of initial concentration
Effect of MV dye concentration at 10–100 

mg/L at 25 °C to investigate the influence of 
concentration. The removal efficiency, E%, is 
plotted against the initial concentration in Fig.  
10. After one hour, the equilibrium time was 
supposed to approach balance[30].  found that 
the adsorption efficiency increased from 92.88 to 
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 Fig. 11. Effect of regeneration and reuse of hydrogel.

Fig. 10. Effect of initial concentration of MV dye.
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99.88 % when the initial concentration of MV dye 
was increased from 10 mg/L to 100 mg/L at 25 °C 
and pH 7. In contrast, the clearance rate dropped 
as the concentration improved when it climbed 
sufficiently. Since an increase in concentration has 
a minor impact on the removal rate due to the 
filling, an acceptable efficiency was determined at 
a concentration of 100 mg/L and an equilibrium 
time of 60 min [31-33].

Recycling and recovery 
Recovery and recycling tests were conducted 

on the same hydrogel samples to evaluate the 
long-term effectiveness of the hydrogel adsorbent 
in removing MV dye from water. Four cycles of 
adsorption and desorption were performed, 
and the efficiency of MV dye extraction was 
assessed after each cycle, as shown in Fig. 11. The 
reusability of an adsorbent is crucial for its practical 
application. To test the reuse of the hydrogel, we 
utilized a hydrochloric acid solution to examine the 
adsorption process of the bound dye molecules. 
With the application of hydrochloric acid, the 
adsorption rate reached 77.75%. Consequently, 
we utilized hydrochloric acid to further enhance 
the adsorption of MV dye from the surface of the 
hydrogel[34]

CONCLUSION
An active hydrogel surface is created using (GG) 

within hydrogel networks, which are effectively 
prepared through a copolymerization process. This 
method enhances the swelling of the hydrogels, 
resulting in a higher adsorption capacity. The 
surface demonstrated an impressive adsorption 
capacity of approximately 998 mg/g. Additionally, 
the surface charge of the hydrogel was determined 
to be 4.20, which describes the surface as acidic. 
To reduce economic costs, the prepared surface 
was recycled and reused over four consecutive 
cycles. The absorbent maintained a very high 
adsorption capacity, ranging from 90.11% in 
the first cycle to 88.89% in the fourth cycle. This 
indicates exceptional recovery of the hydrogel.
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