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This study investigated the antimicrobial properties of chitosan-based 
nanocomposites against E. coli and Porphyromonas bacteria. The 
nanocomposites, including CS, CS-ZnO, CS-TiO2, and CS-ZnO-TiO2, were 
synthesized using pulsed laser ablation in liquid (PLAL). Characterization 
techniques confirmed the formation of nanoparticles with varying sizes 
and distributions. Antimicrobial assays demonstrated that the CS-ZnO-
TiO2 nanocomposite exhibited superior inhibitory activity against both 
bacterial strains compared to the individual components or their binary 
combinations. The inhibition percentage increased with the concentration 
of the nanomaterials, highlighting the dose-dependent antibacterial effect. 
Statistical analysis confirmed significant differences in the antibacterial 
activity of the different nanomaterials. These findings suggest that the CS-
ZnO-TiO2 nanocomposite has potential as a broad-spectrum antimicrobial 
agent, warranting further investigation into its mechanism of action and 
optimization for various applications.

INTRODUCTION
Chitosan, a well-known material with 

antibacterial, biodegradable and biocompatible 
properties, can be used to produce thin films. 
Nonetheless, nanomaterial infusion has been 
investigated by scientists so as to enhance its 
antibiotic efficacy against various bacterial strains 
in order to meet particular needs [1, 2, 3]. An 
example of this is the incorporation of zinc oxide 
(ZnO) and titanium oxide (TiO2) nanostructures 
having distinct characteristics which are usable 
in diverse industries [4, 5, 6]. In fact, zinc oxide 
nanoparticles show a direct energy gap width 
of 3.36 eV and possess such attributes as strong 
ultraviolet radiation absorption; photocatalytic 
activity; stability; antibacterial potency; non-
toxicity on one hand while titanium oxide 

nanoparticles, which can be under 100 nanometers 
in size generally, enhance the mechanical 
properties of materials like corrosion/oxidation 
resistance and exhibit remarkable electrical/
magnetic traits making them appropriate for 
industrial as well as technical applications.

Various techniques may be employed 
such as using green compounds to decorate 
chitosan matrices with titanium thus conferring 
antimicrobial properties for synthesizing these 
nanomaterials. Moreover, creation of zinc oxide 
and titanium dioxide nanoparticles within chitosan 
solutions can be done using laser ablation with 
strict control over particle size reduction and 
stability enhancement. Pulsed laser ablation in 
liquid technology (PLAL) is a potent method that 
has some advantages over alternative methods, 
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where nanoparticle size and structure depend on 
the pulse duration, wavelength and energy [7, 8].  
The diverse applications are driving the rapid 
development of nanoparticles production 
especially nanocomposites for better performance. 
In this study we propose a new synthesis of 
nanocomposite by combining chitosan with zinc 
oxide and titanium oxide through laser ablation 
to reduce processing time. This approach may 
be used to combine the synergistic properties 
of these composites leading to multifunctional 
materials having wide applicability [9, 10].

This study aims to address these limitations 
by employing a green and efficient synthesis 
approach, pulsed laser ablation in liquid (PLAL), 
to create chitosan-ZnO-TiO2 nanocomposites. 
By combining the antimicrobial properties of 
chitosan with the photocatalytic and antibacterial 
characteristics of ZnO and TiO2, we hypothesize 
that the resulting nanocomposite will exhibit 
enhanced antimicrobial activity against a broad 
spectrum of bacteria.

MATERIALS AND METHODS
Materials

Chitosan powder (purchased from Life Sciences, 
GP5053). Zinc and titanium plates (purity 99.8%) 
were purchased from the commercial market as 
the target.

Preparation of the Nanocomposite
Dissolve 0.5 g of chitosan powder in a solution 

containing 670 ml of water and 70 ml of acetic 
acid.

For the synthesis of zinc oxide (ZnO) 
nanoparticles, employ pulsed laser ablation in 
liquids. Submerge a zinc plate in the prepared 
chitosan solution. Use an Nd: YAG laser operating 
at a 1064 nm wavelength, with a pulse energy of 
500 mJ, duration of exposure of one minute per 
pulse, and a pulse frequency of 6 Hz, delivering 
1500 pulses onto the plate. After removing 
the zinc plate from the chitosan-ZnO (CS-ZnO) 
solution, submerge the titanium plate in the CS-
ZnO solution to obtain TiO2 nanoparticles using 
the same ablation parameters. The composite 
CS-ZnO-TiO2 is successfully synthesized. The laser 
beam should be directed perpendicular to both 
the zinc and titanium plates, facilitated by a convex 
lens featuring a focal length of 10 cm.

Distinctly, CS-ZnO and CS-TiO2 nanocomposites 
should be individually prepared within the same 

chitosan solution, employing the previously 
specified laser parameters for each sample (CS-
ZnO, CS-TiO2, and CS-ZnO-TiO2).

The compound should be placed in plastic 
tubes and sent for examination using transmission 
electron microscopy (TEM). These samples 
were placed within quartz cells for UV-visible 
spectroscopy testing.

Antimicrobial Section
To examine the effectiveness of the 

nanocomposite, two types of clinical isolates (E. 
coli) (gram-negative) and Porphyromonas (gram-
positive) were used. The bacterial isolates were 
transferred to the appropriate culture medium for 
bacterial growth and placed in an incubator for 24 
hours at 37 C0. The activity of the nanocomposite 
was examined by making four small holes into 
which nanomaterials were poured in succession. 
The first hole was for the solvent, which is 
chitosan (CS), the second hole was for (CS –TiO2), 
the third was for (CS-ZnO), and the fourth was 
for the nanocomposite (CS-ZnO-TiO2). Different 
concentrations of the aforementioned materials 
were added, and then the dishes were placed in 
the incubator for 24 hours [11, 12].

RESULTS AND DISCUSSION
The TEM images in Fig. 1 revealed that all 

the examined samples consisted of spherical 
nanoparticles, with the average size of the zinc 
particles being 94 nm, the medium size of the 
titanium being 15 nm, and the average size 
of the compound being 12 nm. The images 
also indicated that the zinc and titanium were 
linked with the polymer lattice. The synthesis 
of titanium and zinc with chitosan to produce 
spherical nanoparticles has been an active area 
of research and development, with potential 
benefits including a large surface area, improved 
mechanical and microscopic properties, and 
enhanced electrochemical properties, making 
them suitable for medical uses

In general, the smaller the size of nanoparticles, 
the greater their potential benefits in multiple 
fields, such as technology, medical sciences, 
and materials. However, precautions must be 
taken when handling nanoparticles due to their 
small size impact on safety and impact on the 
environment [13].

The UV-visible spectroscopy is a very useful 
and reliable technique in the preliminary 
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While Figure 5 shows the TEM exam  

 

 

 

 

 

 

A.The TEM images for (CS-ZnO) 

 
B. The TEM images for (CS-TiO2) 

 
  

Fig.1. A, B, C the TEM examination for (CS-ZnO) (CS –TiO2) (CS-ZnO-TiO2).

characterization of synthesized nanoparticles and 
is also used to monitor the synthesis and stability 
of nanoparticles.

Fig. 2 shows that the peaks (230-240) nm 
represent zinc and titanium, respectively. This 
indicates that the zinc and titanium nanoparticles 
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Cs Cs -Zno Cs-Tio2 Cs -Zno-Tio2
10 1 8.5 9 11
20 2 9.5 10 13
30 3 10.5 11 15
40 4 11.5 12 17
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Fig. 3. the Nanomaterials at different amounts (10, 20, 30, 40) µl which inhibited E. coli bacteria to certain percentages.

Fig. 2.  The absorbance for (CS-ZnO), (CS-TiO2), (CS-ZnO-TiO2).
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have been linked to the polymer chain, and this is 
consistent with the research.

Antibacterial activity assay of the nanocomposite
Figs. 3-7 illustrate the antibacterial effects 

 

  

 

  
Fig. 5. t-Test analysis presented as the mean ± SD for the four Nanomaterials (CS, CS-ZnO, CS-TiO2 and CS-ZnO-TiO2) inhibited E. 

coli bacteria.

Fig. 4.  Statistics analysis for the four Nanomaterials (CS, CS-ZnO, CS-TiO2 and CS-ZnO-TiO2) inhibited E. coli 
bacteria.
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of the synthesized nanomaterials (CS, CS-
ZnO, CS-TiO2, and CS-ZnO-TiO2) against E. coli 
and Porphyromonas, respectively. The results 
demonstrate a concentration-dependent 

antibacterial activity, with the CS-ZnO-TiO2 
nanocomposite exhibiting the most potent 
inhibition for both bacterial strains [13, 14]. This 
composite effectively inhibited bacterial growth 

 

  

 

 
 
  

Nanomaterial Count Mean Std Min 25% 50% 75% Max 
CS 4 2.5 1.29 1 1.75 2.5 3.25 4 

CS-ZnO 4 10 1.29 8.5 9.25 10 10.75 11.5 
CS-TiO2 4 10.5 1.29 9 9.75 10.5 11.25 12 

CS-ZnO-TiO2 4 14 2.58 11 12.5 14 15.5 17 

 
 CS CS-ZnO CS_TiO2 CS_ZnO_TiO2 

count 4 4 4 4 
mean 1.25 9 9.5 13 

std 0.645497 1.290994 1.290994 2.581989 
min 0.5 7.5 8 10 
25% 0.875 8.25 8.75 11.5 
50% 1.25 9 9.5 13 
75% 1.625 9.75 10.25 14.5 
max 2 10.5 11 16 

 

Table 2. The Basic Statistics of the Nanomaterials at different amounts (10, 20, 30, 40) µl which inhibited Porphyromonas to certain 
percentages.

Table 1. The Basic Statistics of the Nanomaterials at different amounts (10, 20, 30, 40) µl which inhibited E. coli bacteria to certain 
percentages.

Fig.6. Inhibition Percentage of E. coli bacteria based on CS-ZnO-TiO2 as a Nanomaterial.
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at concentrations as low as 40 µL, suggesting 
its potential as a broad-spectrum antimicrobial 
agent. The observed superior performance of 
the nanocomposite compared to its individual 
components highlights the synergistic effects 
of combining chitosan, zinc oxide, and titanium 
oxide. These findings underscore the potential 
application of this nanocomposite in addressing 

various infections caused by both Gram-negative 
(E. coli) and Gram-positive (Porphyromonas) 
bacteria [15, 16].

 
Statistical Analysis of Antimicrobial Activity

To rigorously evaluate the antimicrobial efficacy 
of the synthesized nanomaterials (CS, CS-ZnO, 
CS-TiO2, and CS-ZnO-TiO2), statistical analysis was 
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  Fig. 8.  Statistics analysis for the four Nanomaterials (CS, CS-ZnO- CS-TiO2 and CS-ZnO-TiO2) inhibited  
Porphyromonas.

Fig. 7.  The Nanomaterials at different amounts (10, 20, 30, 40) µl which inhibited Porphyromonas bacteria to certain percentages.
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performed as in Figs. 4, 5, 6, 9 and 10 and Tables 
1 and 2. A test revealed significant differences 
in the mean inhibition percentages among the 
four nanomaterials (p < 0.05). The Cs-ZnO-TiO2 
nanocomposite demonstrated significantly higher 
inhibition rates compared to the other groups 
(p < 0.05), confirming its superior antibacterial 
properties.

Correlation analysis between nanomaterial 
concentration and inhibition percentage indicated 
a strong positive correlation (r > 0.9) for all 

nanomaterials, suggesting a dose-dependent 
antibacterial effect. However, the slope of the 
regression line for CS-ZnO-TiO2 was significantly 
steeper than for the other nanomaterials, further 
emphasizing its potency.

The statistical analysis confirms the visual 
observations from the figures, demonstrating 
that the CS-ZnO-TiO2 nanocomposite exhibits 
superior antibacterial activity against both E. coli 
and Porphyromonas compared to the individual 
components or their binary combinations. The 

 

  

 

 
Fig. 10. Inhibition Percentage of Porphyromonas based on CS-ZnO-TiO2 as a Nanomaterial.

Fig. 9. t-Test analysis presented as the mean ± SD for the four Nanomaterials (CS, Cs-ZnO, CS-TiO2 and CSs-ZnO-TiO2) inhibited 
Porphyromonas.
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dose-dependent response suggests that increasing 
the concentration of the nanocomposite can 
further enhance its inhibitory effect.

These findings highlight the potential of the 
CS-ZnO-TiO2 nanocomposite as a promising 
antimicrobial agent.

CONCLUSION
This study successfully synthesized chitosan-

based nanocomposites using the PLAL technique 
and evaluated their antimicrobial properties 
against E. coli and Porphyromonas bacteria. 
The results demonstrated that the CS-ZnO-
TiO2 nanocomposite exhibited the most potent 
antibacterial activity compared to the individual 
components or their binary combinations. The 
observed dose-dependent inhibition and the 
superior performance of the nanocomposite 
highlight its potential as a promising antimicrobial 
agent. Further research should focus on 
elucidating the underlying mechanisms of 
antibacterial action, optimizing the synthesis 
process for enhanced efficacy, and evaluating the 
safety and biocompatibility of the nanocomposite 
for potential biomedical applications.
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