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In this research, MnCo2O4/Co3O4 nanocomposites were prepared via simple 
and fast microwave method. The effect of irradiation power and irradiation 
type (continuous and non-continuous irradiation) on crystalline structure, 
purity, size and morphological properties of products were investigated 
via X-ray diffraction (XRD) analysis, energy dispersive spectroscopy 
(EDS), Transmission Electron Microscopy (TEM), FT-IR and Scanning 
Electron Microscopy (SEM) respectively. Results revealed that shape and 
morphological properties of MnCo2O4/Co3O4 nanocomposites can be 
affected via power and time of microwave irradiation. In the next step, 
prepared nanocomposites were applied for photodegradation of rhodamine 
B and methyl violet as organic pollutants. Findings demonstrated that 
MnCo2O4/Co3O4 nanocomposites can degrade rhodamine B and methyl 
violet via 58% and 61% efficiency.

INTRODUCTION
Transition-metal oxides based nanocomposites 

exhibit novel properties that significantly have 
different physical and chemical properties than 
those matrix material and the filler resulting [1-
4].  In other hand, nanocomposites have a unique 

and attractive properties due to small size effect 
[5, 6]. Magnetic nanocomposites not only have 
unique size-dependent properties but also get 
benefits from interesting magnetic properties. The 
magnetic nanocomposites due to vast variety of 
different materials have high capability in different 
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application fields, ranging from biomedical to 
photocatalysis applications [7-9]. Photocatalysis is 
a type of catalysis that speeding up the rate of a 
photoreaction - a chemical reaction that involves 
the absorption of light by one or more reacting 
species - by adding catalysts that participate in the 
chemical reaction without being consumed [10, 
11]. A photocatalyst is defined as a material that is 
capable of absorbs Ultraviolet (UV) radiation from 
sunlight or illuminated, producing electron–hole 
pairs that enable chemical transformations of the 
reaction participants and regenerate its chemical 
composition after each cycle of such interactions. 
An efficient photocatalyst should benefits 
desirable optical features, suitable morphological 
properties and reusability [12-14].

Cobalt oxide (Co3O4) is an important magnetic 
and P-type semiconductor. Till now, wide range 
of Co3O4 based nanocomposites have been 
prepared and applied in photocatalysis field 
[12, 15, 16]. Yong sheng Yan and et al. prepared 
carbon modified Co3O4/BiVO4 p-n heterojunction 
photocatalyst (Co3O4/BiVO4/C) for enhancing 
light absorption and the facilitating separation of 
photogenerated charge carriers through forming a 
p-n heterojunction. They reported that optimum 
activity of the Co3O4/BiVO4/C p-n heterojunction 
is higher than that of pure Co3O4 and BiVO4 for 
the degradation of tetracycline under visible 
light [17]. In other work, Xinfa Dong and et al. 
prepared Co3O4/Cd0.9Zn0.1 nanocmposites via 
solvothermal method. Under visible light, they 
showed Co3O4/Cd0.9Zn0.1 H2 evolution is 15.88 
times higher than that obtained over the bare 
Cd0.9Zn0.1S [18]. Ashok Kumar Chakraborty 
synthesized Co3O4/WO3 nanocomposites by 
dispersing p-type semiconductor Co3O4 on the 
surface of n-type semiconductor WO3. Results 
revealed that prepared nanocomposites have 
higher photocatalytic activity than WO3, Co3O4 
nanoparticles for the complete decomposition of 
2-propanol in gas phase and phenol in aqueous 
phase and evolution of CO2 under visible light 
irradiation [19].  

In this work, MnCo2O4/Co3O4 nanocomposites 
were prepared via simple and low-cost microwave- 
assisted method.  The as-prepared products were 
characterized by different analyses such as XRD, 
SEM, TEM, FT-IR, and UV-Vis and the photocatalytic 
performance of the product was investigated 
by degradation percent of methylene blue as an 
organic pollutant under UV irradiation.

MATERIALS AND METHOD
Co(CH3COO)2.4H2O and of Mn(CH3COO)2.4H2O  

and ethylene glycol was purchased from Merck 
and all the chemicals were used as received 
without further purifications. XRD patterns were 
recorded by a Philips, X-ray diffractometer using 
Ni-filtered CuKα radiation. Fourier transform 
infrared (FTIR) spectra were detected by means 
of Nicolet Magna-550 spectrometer in KBr pellets. 
The UV–Vis diffuse reflectance analysis of the as-
prepared nanocomposite was done by applying 
a UV–vis spectrophotometer (Shimadzu, UV- 
2550, Japan). SEM images were obtained using a 
TESCAN instrument model Mira3 to taking images, 
the samples were coated by a very thin layer of 
Pt to make the sample surface conductor and 
prevent charge accumulation, and obtaining a 
better contrast. Transmission electron microscopy 
(TEM) image was achieved via a Philips EM208 
transmission electron microscope with an 
accelerating voltage of 200 kV.

Synthesis MnCo2O4/Co3O4 nanocomposite
Co(CH3COO)2.4H2O and of Mn(CH3COO)2.4H2O 

with 1:1 molar ratio were dissolved in water/
ethylene glycol solvent, which was mixed with 
a ratio of 2:1. After completely dissolving, the 
gained transparent solution was transferred to the 
microwave oven and placed under irradiation at 
various time and power. The obtained precipitate 
was washed with distilled water and dry at 85 °C 
for 5h. Eventually, the product was calcined at 
600 °C for 3h. Three samples were prepared at 10 
minutes irradiation with power of 900 and 750.

Photocatalytic test
For photocatalyst testing, the amount of 0.05 

g of nanocomposites is added to a dye with10 
ppm concentration in the quartz reactor. Then 
the mixture was placed in photoreactor after 
stirred for 30 min at dark, the UV light was 
applied. Then MnCo2O4/Co3O4 nanocomposites 
was separated from the 5 ml samples, taken from 
the degraded solution at various time intervals, 
using 5 min centrifuging at 12,000 rpm. The dye 
concentration was determined with aid of a UV-vis 
spectrophotometer. The test was performed for 
120 minutes.

RESULTS AND DISCUSSION
XRD analysis, which is the most useful and 

functional technique for both existence and 
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identification of crystalline structure, was hired to 
investigate the synthesized samples. Fig. 1 shows 
XRD pattern of MnCo2O4/ Co3O4 nanocomposites. 
It can be observed Cubic phase of Co3O4 (JCPDS: 
43-1003) with space group of Fd3m and cell 
constants a = b = c = 8.0840 Å and Cubic phase 
of MnCo2O4 (JCPDS: 23-1237) with space group of 
Fd3m and cell constants a = b = c = 8.2690 Å were 
formed. The crystalline size was calculated from 
Scherrer equation, Dc = Kλ/βCosθ, where β is the 
width of the observed diffraction peak at its half 
maximum intensity (FWHM), K is the shape factor, 
which takes a value of about 0.9, and λ is the X-ray 
wavelength (CuKα radiation, equals to 0.154 nm) 
was about 19 nm. 

Fourier transform infrared (FT-IR) 
spectroscopy has been employed for analysis 
of the surface functional groups of MnCo2O4/ 
Co3O4 nanocomposites at 10 min in 900 W after 
calcination at 600 °C for 3h. As shown in Fig. 2, the 
most prominent absorption bands at 657 cm-1 
and 560 cm-1 are corresponding to metal-oxygen 
bonds in spinel structure of composite [20]. Due to 
the calcination of the sample at 600 ° C, no further 
peaks were observed in the sample. Furthermore, 
the broad bands observed at 3436 cm-1 were 

attributed to the OH groups stretching vibrations 
of the water molecules [21].

The elemental composition analysis of the as-
synthesized MnCo2O4/ Co3O4 nanocomposites at 
10 min in 900 W were further confirmed by EDS 
analysis. As can be seen in Fig. 3, the MnCo2O4/ 
Co3O4 nanocomposites were composed of 
stoichiometric Co, Mn and O elements, which 
indicating the high purity of the products. This 
result is consistent with the results of XRD pattern 
presented in Fig. 1.

To investigate the effect of the power and type of 
irradiation on the morphology and particle size of 
the MnCo2O4/ Co3O4 nanocomposites the samples 
were fabricated by using the power of 900 and 
750 W for 10 min, and 900 W with cyclic reaction 
(1 min on and 30 sec off). To assess the effect of 
these conditions SEM images were investigated. 
As can be seen in Fig. 4, when the power is set to 
(a) 750 W, larger particles are formed due to the 
moderate radiation power. At (b) 900 W, Due to 
the high radiation power, the ratio of nucleation 
to growth speeds up, resulting in smaller particles. 
Also in (c) cyclic reaction, when radiation is 
present, nucleation occurs and the particles are 
formed but when radiation is cut off, the particles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD pattern of MnCo2O4/ Co3O4 Nanocomposites prepared at 10 min in 900 W.
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of opportunity grow, resulting in larger particles. 
According to SEM images, the sample obtained at 
900 W and 10 min was selected as the optimum 
sample.

TEM analysis was applied to in-depth 
investigation of size and morphological 

properties of MnCo2O4/ Co3O4 nanocomposites. 
It is worth bearing in mind that SEM analysis 
cannot distinguish between Co3O4 and MnCo2O4 
in MnCo2O4/ Co3O4 nanocomposites. Fig. 5 
illustrated TEM images in different magnification 
validate uniform nanoparticles of as-prepared 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. FT-IR spectrum of MnCo2O4/ Co3O4 Nanocomposites prepared at 10 min in 900 W.

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. EDS spectrum of MnCo2O4/ Co3O4 Nanocomposites prepared at 10 min in 900 W.
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nanocomposites via 35 nm in diameter.
Fig. 6 presents the UV-Vis diffuse reflectance 

spectra (DRS) of the as-prepared MnCo2O4/ 
Co3O4 nanocomposites (samples). It can be 

observed that the nanocomposites have strong 
and broad absorption peaks in the range of 250-
400 nm. The value of energy band gap (Eg) of the 
corresponding nanoparticles is calculated 3.3 eV, 

 

 

 

 

 

 

Fig. 4. SEM images of the MnCo2O4/ Co3O4 samples synthesized with different condition in two magnification: (a) 10 min at 750 W, (b) 
10 min at 900 W, (c) 10 min at 900 W cyclic reaction (1min on 30 sec off).
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based on Tauc’s equation[22], which indicating the 
nanocomposites can be employed as a potential 
photocatalyst for degradation water soluble dye as 

a pollution.
Optical properties of product implies that 

prepared nanocomposites can be applied 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. TEM images of the MnCo2O4/ Co3O4 Nanocomposites prepared at 10 min in 900 W

Fig. 6. (a) UV-Vis diffuse reflectance spectrum (DRS) of the MnCo2O4/ Co3O4 Nanocomposites prepared at 10 min in 
900 W, and (b) the plot of (αhʋ)2 against hʋ to determine the band gaps. 
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in photocatalytic process. Rhodamine B and 
methyl violet are selected as organic pollutants 
for investigation of photocatalytic efficiency 
of MnCo2O4/ Co3O4 nanocomposites under UV 
irradiation. Results are presented in Fig. 7. For 
methyl violet case, it can be seen that dye is 
degraded very faster in early 30 min irradiation. 
After 30 min, degradation rate was gone down 
gradually. It can be related to occupying active 
sites on the MnCo2O4/ Co3O4 nanocomposites 
(adsorption route). After 120 min, approximately 
61% of methyl violet was degraded. For rhodamine 
B, degradation rate keeps constant after 80 min. 
After 120 min, approximately 58% of rhodamine B 
was degraded under UV irradiation. The electronic 
band structure of prepared MnCo2O4/ Co3O4 
nanocomposites make it very good candidate for 
photocatalytic degradation. As well as mentioned 
in Fig. 6, the band gap of prepared nanocomposites 
was calculated 3.3 eV. This means that under UV 
irradiation, electrons can be moved from valance 
band to conducting bond in MnCo2O4/ Co3O4 

nanocomposites. This movement can be lead to 
generation of holes (h+). Photogenerated holes 
can convert water to hydroxide ions (OH-). OH- 
reacts with h+ and produce hydroxyl radical (OH•). 
Produced OH• could give rise to oxidation of dyes 
[24].

hʋ → e- + h+                                                                (1)

h+ +H2O → H+ + OH-                                                    (2)

h+ + OH-→ OH•                                                           (3)

OH• + dye → Oxidation dye               (4)

In the parallel pathway, photogenerated OH- 
in reaction (2) can be reacted with dissolved 
oxygen and produce ozone (O3). Produced ozone 
can be converted to O3

• through reaction with 
photogenerated electron in conducting bond.  
Generated O3

• could be degraded dye.

2 OH- + O2 + 2h+ → O3 + H2O                                    (5)

e- + O3 → O3
•                                                               (6)

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Photocatalytic activity of MnCo2O4/ Co3O4 nanocomposites against the rhodamine B and methyl violet
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O3
•+ dye → Oxidation dye                                       (7)

CONCLUSION
In conclusion, microwave-assisted route 

was applied for preparation of MnCo2O4/Co3O4 
nanocomposites. Prepared products were 
characterized via XRD, FT-IR, EDS, SEM and 
TEM analysis. Optical properties of products 
was investigated via UV-Vis spectroscopy. 
Results cleared that prepared MnCo2O4/
Co3O4 nanocomposites are good candidate 
for photocatlytic processs. Fot this purpose, 
MnCo2O4/Co3O4 nanocomposites were applied 
for photodegradation of rhodamine B and methyl 
violet. Findings showed that rhodamine B and 
methyl violet were degraded via 58% and 61% 
efficiency.
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