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Carbon quantum dots-based nanostructures have been found more 
attention in recent years. In this study, Au-doped tin oxide/carbon 
quantum dots (Au:SnO2/carbon quantum dots) nanocomposites was 
prepared via simple and friendly to the environment route. The obtained 
results from X-ray diffraction (XRD) analysis, Fourier-transform infrared 
spectroscopy (FT-IR), scanning electron microscopy (SEM), energy 
dispersive spectroscopy (EDS) analysis, photoluminescence spectroscopy 
(PL), and Ultra violet-Visible (UV-Vis) spectroscopy showed the 
formation of the pure and regular shape of Au:SnO2/ carbon quantum 
dots. Then, prepared Au:SnO2/ carbon quantum dots was utilized for the 
testing of antibacterial activity using Aspergillus niger,, Bacillus subtilis, 
Candida albicans, Escherichia coli, Klebsiella pneumonia, pseudomonas 
aeruginosa, Salmonella paratyphi-A serotype, Shigella dysenteriae, 
Staphylococcus aureus, Staphylococcus epidermidis, and  Streptococcus 
pyogenes. The modified sample showed significant improvement against 
tested bacteria. The best antibacterial activity was observed in Au:SnO2/ 
carbon quantum dots against pseudomonas aeruginosa with MIC values of 
62.5 μg/ml. The obtained results demonstrate Au:SnO2/ carbon quantum 
dots nanocomposites are highly suitable as an antibacterial agent against 
both Gram-negative and Gram-positive bacteria. 
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INTRODUCTION
Bacterial infection is the main cause of chronic 

infection and death [1-5]. Antibiotics are the 
preferred treatment for bacterial infections 
because they are cost-effective and powerful [6-
10]. However, some studies have provided direct 
evidence that the widespread use of antibiotics has 
led to the emergence of multi-drug resistant strains 
[11-14]. Most of the current molecular antibiotics 
have an effect on microorganisms via one among 
the three microorganism targets: cell wall, change 
of location machinery, and deoxyribonucleic 
acid replication [15, 16]. Although nanoparticles 
(NPs) can react simultaneously through several 
processes, such as (1) generation of reactive 
oxygen species (ROS), (2) electrostatic interaction 
with cell membranes, (3) release of ions e 
(4) internalization [17-20]. Due to the unique 
properties of nanoparticles due to their size, 
nanostructures are widely used in antibacterial 
applications. It is necessary to acknowledge that 
whereas some metals, akin to copper, tin, and 
silver, exhibit antibacterial mechanisms in their 
bulk type, different materials, such as iron oxide, 
don’t seem to be antibacterial in their bulk form 
however might exhibit antibacterial properties in 
nanostructure form [21-26]. Tin compound (SnO2) 
is one of the notable metal oxides that possess 
glorious electrochemical, optical and electronic 
properties. For their excellent properties, SnO2-
based nanomaterials have found more attention 
in antibacterial application [27-31].

Eduardo B. Tibayan Jr et al. synthesized silver/
tin oxide (Ag/SnO2) nanocomposites as coating 
materials with high antibacterial activity. They 
applied scanning electron microscope (SEM) 
and density functional theory (DFT) methods to 
characterize the nanocomposite structures and 
confirm that Ag (1 1 1) and SnO2 (1 1 0) form 
nanorods of Ag/SnO2. They found that toxicity to 
E. coli and S. aureus increased with respect to the 
amount of silver within the composite, with the 
best antibacterial activity being observed at a 4:1 
ratio of Ag:SnO2. Also, the antimicrobial activity of 
the Ag/SnO2 were increased when particle sizes 
were reduced to nanoscale [32]. 

A. Arfaoui et al. prepared SnO2, SnO2/MoO3, and 
SnO2/WO3 thin films via the thermal evaporation 
technique. They characterized prepared thin films 
via XRD, AFM, SEM, and UV-Vis analysis. It is found 
that SnO2/MoO3 and SnO2/WO3 nanomaterials 
showed higher photocatalytic activity than of 

SnO2. The antibacterial activity investigation 
towards Pseudomonas Aeroginosa revealed that 
only SnO2/WO3 thin film has shown antibacterial 
activity[33].

This study aimed to examine the effect 
of Au:SnO2/carbon dots nanocomposites in 
preventing bacterial growth. First, Au:SnO2/carbon 
dots nanocomposites is synthesized via novel and 
simple route. The structural properties of prepared 
samples are characterized via XRD, FTIR, EDS, SEM, 
TEM, UV-Vis, and PL analysis. The antibacterial 
activity of Au:SnO2/carbon dots nanocomposites 
is examined against various Gram-negative and 
Gram-positive bacteria. 

MATERIALS AND METHODS
Synthesis of carbon dots

Pears were used to greenly synthesize carbon 
quantum dots by the hydrothermal method. First, 
10 mL of pear water was added to 10 mL ethanol. 
Then, the prepared solution was placed on the 
magnetic stirrer for 30 minutes. The obtained 
solution was transferred into stainless steel 
autoclave and heated for 5 hours at 190 °C. Finally, 
the solution was centrifuged several times and 
keep in the 4 ˚C for further tests. 

Synthesis of SnO2 nanoparticles
Rosemary plant extract was used for the 

green synthesis of tin oxide nanoparticles. 
First, 10 mL of the extract was distilled in 20 ml 
of deionized water. Then, the SnCl2.2H2O was 
distilled in 30 ml of water, then after 20 minutes 
the Rosemary plant extract solution was added 
to the tin-containing solution and brown-colored 
precipitate was obtained. Using a centrifuge, the 
solid was separated and washed with water. The 
obtained solid was dried for 12 hours at 60 ˚C. The 
prepared solid was calcined for 3 hours at 450 °C 
to formation pure SnO2 nanoparticles.

Synthesis of Au:SnO2
Au:SnO2 nanomaterial was synthesized similar 

to the preparation of SnO2 nanoparticles, except 
that before adding Rosemary plant extract, 
HAuCl4.3H2O was added to the solution.

Synthesis of Au:SnO2/carbon dots nanocomposites
0.1 g of as-obtained Au:SnO2 nanoparticle was 

dissolved in 20 cc of distilled water, then 5 cc 
of the prepared dot was added to the Au:SnO2 
nanoparticle mixture. The obtained mixture was 
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stirred for 24 h vigorously. Finally, the solid was 
dried for 12 hours at 60 ˚C.

Antimicrobial activity assay
For the antimicrobial activity test, a 

concentration of 10 mg/ml Au:SnO2/carbon dots 
was prepared, then the bacterial suspensions 
were diluted to 106 CFU / ml and finally exposed 
to treatment with 300 μl Au:SnO2/carbon dots for 
1, 2, 3 and 4 days at 37 ° C. Aliquots (10 μl) were 
taken from each sample tube, diluted to 103 CFU / 
ml and seeded on Müller agar Hinton for 24 to 37 ° 
C. The colonies were then counted and the results 
were reported as log10 CFU/ml expressed.

RESULTS AND DISCUSSION
Fig. 1 shows XRD pattern of prepared Au:SnO2/

carbon dots. As can be seen in XRD pattern, 
the noisy broad weak peak in 2θ=21˚ have 
corresponded to carbon dots. Other observed 
peaks confirmed the formation of tetragonal 
SnO2 with space group P42/mnm (reference code 01-
077-0450). The high intensity of peaks confirms 
a good crystallinity of the synthesized tin oxide 
nanoparticles, and large width of the full width 
at half maximum (FWHM) of the peaks leads to 
the small grain size of the tin oxide nanoparticles. 
For the calculation of crystalline size, the Scherer 

equation can be applied:

Dc = Kλ/βCosθ                                                          (1)

that β is defined as the width of the provided 
diffraction peak at its half maximum intensity 
(FWHM), K is the shape factor, which takes a 
value of about 0.9, and λ is the X-ray wavelength 
(CuKα radiation, equals to 0.154 nm). The average 
crystallite size was calculated 23.2 nm. It was 
predictable that the Au-related peak would not 
be seen in the XRD patern because the amount of 
doped Au was very low.

The EDS analysis was applied for the chemical 
characterization of samples. As well as shown in 
Fig. 2, the EDX profile virtually proves the presence 
of C, Sn, O, and Au elements, which might be a 
part of the authentic synthesized Au:SnO2/carbon 
dots. Percentage compositions of the elements 
present in Au:SnO2/carbon dots are presented in 
a Table inserted under Fig. 2. It is clear that no 
other dominated peak was observed in the EDS 
spectrum that confirmed that the as-prepared 
Au:SnO2/carbon dots is formed with any impurity.

FT-IR analysis was used for the investigation 
surface functional group of the product. Fig. 3 
shows FT-IR spectrum of Au:SnO2/carbon dots. 
As-showed broad peak in 3412 and sharp peak 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD pattern of synthesized Au:SnO2/carbon dots nanocomposites.
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Fig. 2. EDS analysis of as-prepared Au:SnO2/carbon dots nanocomposites.

Fig. 3. FTIR spectra of prepared Au:SnO2/carbon dots nanocomposites.
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at 1744 cm-1 in the FT-IR spectrum of products 
confirm hydroxyl group stretching vibrations and 
bending mode vibrations associated with the 
absorption of a few molecules of water. The bonds 
in the wavenumber range of 1000-1500 cm-1 
are related to the C-C in carbon dots and Sn-OH 
stretching vibration. The main characteristic peaks 
at low wavenumbers, including 685 cm−1 and 
606 cm−1 can be attributed to the antisymmetric 

and symmetric tin-oxygen-tin vibration, which is 
derived from the active IR modes Eu (TO) mode 
and the A2u (TO) mode.

Morphological properties of as-prepared 
Au:SnO2/carbon dots nanocomposites were 
investigated via scanning electron microscope 
(SEM). SEM images of Au:SnO2/carbon dots is 
shown in Fig. 4 at two different magnifications. It 
can be concluded that the regular morphology of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. SEM images of as-prepared Au:SnO2/carbon dots nanocomposites at two different magnifications.

Fig. 5. TEM images of prepared Au:SnO2/carbon dots nanocomposites at two different magnifications.
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SnO2 nanoparticles are formed in 50 nm diameter. 
It should be noted that SEM images could not 
distinguish the Au nanoparticles and carbon 
dots. Carbon dots could not be investigated 
via the SEM analysis for their very tiny size.  For 

further investigation of prepared Au:SnO2/carbon 
dots transmission electron microscopes (TEM) 
analysis was applied. It is clear in Fig. 5 that very 
tiny carbon quantum dots are formed with tin 
oxide nanoparticles. From TEM images, it can be 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. a) UV-Vis absorption spectra and b) calculated band gap for Au:SnO2/carbon dots nanocomposites.

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The photoluminescence spectra of prepared Au:SnO2/carbon dots nanocomposites.
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revealed that carbon dots have been distributed 
in Au:SnO2 homogenously. 

The optical properties of prepared Au:SnO2/
carbon dots nanocomposites was investigated via 
UV-Vis and PL spectroscopy. Fig. 6a shows the UV-
Vis absorption spectrum of as-prepared Au:SnO2/
carbon dots in the wavelength range of 200-600 
nm. The strong absorption peak is observed at 278 
nm. This can be attributed to the direct band gap 
of SnO2 nanoparticles that confirms absorption for 
the electronic transitions from the valence band 
to the conduction band. The energy band gap (Eg) 
is calculated from the optical absorption spectra 
using Tauc relation:  

(αhϑ) = C (hϑ - Eg )1/2 

where α is the absorption coefficient, hʋ is 
the photon energy, and Eg is the band gap. As 
well as illustrated in Fig. 6b, the band gap was 
determined 2.2 and 3.3 eV for the synthesized 
Au:SnO2 and carbon dots respectively. Compared 
to the previously reported band gaps for SnO2 
and carbon dots, it is found that the calculated 
band gap is considerable [34, 35]. PL is known as 
an appropriate technique to investigate optical 
properties of nanoparticles, the active sites on 
the surface of metal oxides, the crystalline quality, 
and also the presence of impurities within the 
materials further as exciton fine structures. Fig. 

7 shows the emission spectrum of prepared 
Au:SnO2/carbon dots nanocomposites. The PL 
spectra of product show the broad luminescence 
band at 438 and 547 nm. The observed band can 
be related to the all Sn and oxygen vacancies, Sn 
interstitials, and defects on the surface of product. 

In this study, the antibacterial activity of 
Au:SnO2/carbon dots nanocomposites was 
examined against Gram-positive and Gram-
negative bacteria. The broth microdilution 
procedure were used to determine the MIC and 
MBC and findings are presented in Table 1. Also, the 
diameter of the inhibition zone is provided in Table 
1. The results demonstrated that Streptococcus 
pyogenes (ATCC 19615) has the highest sensitivity 
since the lowest concentration of Au:SnO2/
carbon dots nanocomposites was applied via 
MIC and MBC value 62.5 and 62.5 μg/ml. The 
results also revealed the antibacterial effect of 
Au:SnO2/carbon dots nanocomposites against 
other Gram-positive and Gram-negative bacteria. 
The findings revealed that Au:SnO2/carbon dots 
nanocomposites has higher antibacterial activity 
than Au:SnO2. No diameter of inhibition zone was 
observed for Au:SnO2 nanomaterial against most 
tested bacteria. Highest antibacterial potency 
of Au:SnO2 nanomaterial was observed against  
Escherichia coli (ATCC 25922) with an inhibition 
zone of 8 mm. Au:SnO2/carbon dots showed 
highest antibacterial activity against Streptococcus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test 
microorganism 

SnO2:Au SnO2:Au/Cdot 
DD MIC MBC DD MIC MBC 

Aspergillus niger 
(ATCC 9029) ― ― 

Bacillus subtilis 
(ATCC 6633)  125 >1000 11 62.50 250 

Candida albicans 
(ATCC 10231)  62.50 250  62.50 62.50 

Escherichia coli (ATCC 25922) 8 62.50 250 10 125 250 
Klebsiella pneumonia 

(ATCC 10031)  125 1000 11 62.5 250 

pseudomonas aeruginosa 
(ATCC 27853)  62.50 250 10 62.50 125 

Salmonella paratyphi-A serotype 
(ATCC 5702)  62.50 1000 11 62.50 125 

Shigella dysenteriae  (PTCC 1188)  125 250 11 62.50 62.50 
Staphylococcus aureus 

(ATCC 29737)  250 1000 14 125 250 

Staphylococcus epidermidis 
(CIP 81.55)  250 1000 16 125 250 

Streptococcus pyogenes 
ATCC 19615  62.50 62.50 16 62.50 62.50 

Table 1. The Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and diameter of inhibition 
zone of the Au:SnO2/carbon dots nanocomposites against tested microorganisms.
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pyogenes (ATCC 19615) with an inhibition zone of 
16 mm. The improvement of antibacterial activity 
via introducing carbon dots can be related to the 
carbon dots-related optical properties. For its 
semiconductor properties, carbon dots improve 
optical properties of Au:SnO2 and this lead to 
increase the photocatalytic activity of Au:SnO2/
carbon dots nanocomposites. The presence of 
carbon dots produced more reactive oxygen 

species (ROS) and this species lead to increase 
antibacterial activity. The antibacterial activity of 
some antibiotics against tested microorganisms is 
provided in Table 2.  

CONCLUSION
In this study Au:SnO2/carbon dots 

nanocomposites were synthesized via a simple and 
novel chemical route. The crystalline structure, 

Nystatin Gentamicin Rifampin Antibiotics 
MIC DD MIC DD MIC DD  

NA NA 3.90 22 62.50 ― pseudomonas aeruginosa 
(ATCC 27853) 

NA NA 3.90 30 31.25 19 Bacillus subtilis 
(ATCC 6633) 

NA NA 31.25 23 15.63 10 Escherichia coli 
(ATCC 10536) 

NA NA 1.95 27 31.25 21 Staphylococcus aureus 
(ATCC 29737) 

NA NA 3.90 17 15.63 8 Klebsiella pneumonia (ATCC 10031) 

NA NA 1.95 39 1.95 44 Staphylococcus epidermidis 
 (ATCC 12228) 

NA NA 3.90 17 15.36 9 Shigelladysenteriae (PTCC 1188) 

NA NA 15.63 24 15.63 8 Proteus vulgaris 
(PTCC 1182) 

NA NA 3.90 18 15.63 8 Salmonella paratyphi-A serotype 
(ATCC 5702) 

NA NA 31.25 ― 31.25 
 
17 
 

Salmonella enterica subsp. Enterica 
(ATCC 13076) 

NA NA 7.81 20 31.25 ― Pseudomonas aeruginosa 
(ATCC 27853) 

NA NA 62.50 125 31.25 13.5 Enterococcus faecalis 
(ATCC 19433) 

NA NA 3.90 20 3.90 11 Escherichia coli 
(ATCC 25922) 

NA NA 1.95 20 1.95 11 Staphylococcus aureus 
(ATCC 25923) 

NA NA 7.81 17 15.63 8 Shigellaflexneri 
(ATCC 12022) 

NA NA 31.25 20 15.63 9 Proteus mirabilis 
(ATCC 43071) 

NA NA 1.95 21 1.95 17.5 Bacillus cereus 
(ATCC 11778) 

NA NA 1.95 45 1.95 27 Staphylococcus epidermidis 
(CIP 81.55) 

NA NA 3.90 17 7.81 8 Acinetobacterbaumannii 
(ATCC BAA-747) 

NA NA 0.975 32 0.975 21 Streptococcus pyogenes 
(ATCC 19615) 

125 33 NA NA NA NA Candida albicans 
(ATCC 10231) 

31.2 27 NA NA NA NA Aspergillusniger 
(ATCC 9029) 

31.2 30 NA NA NA NA Aspergillusbrasiliensis 
(ATCC 16404) 

 

Table 2. The Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and diameter of inhibi-
tion zone of some antibiotics against tested microorganisms.
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purity, and morphological properties of samples 
were characterized via XRD, EDS, SEM, and TEM 
analysis. The results confirmed that Au:SnO2/
carbon dots nanocomposites were formed in pure 
and regular morphology. The optical properties 
of products were investigated via UV-Vis and PL 
analysis. The band gap of as-prepared Au:SnO2/
carbon dots nanocomposites was calculated 2.8 
eV. The biological activity of synthesized Au:SnO2/
carbon dots nanocomposites was examined 
against the Gram-negative and Gram-positive 
microorganisms. It was found that Au:SnO2/carbon 
dots nanocomposites has higher antibacterial 
activity than Au:SnO2. . The results revealed that 
Streptococcus pyogenes (ATCC 19615) has the 
highest sensitivity since the lowest concentration 
of Au:SnO2/carbon dots nanocomposites was 
applied via MIC and MBC value 62.5 and 62.5 μg/
ml.
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