Electrochemical Synthesis and Characterization of Zinc Sulfide Nanoparticles

Document Type : Research Paper

Author

Nano-science Center, Imam Hossein University, Tehran, Iran

10.7508/jns.2014.02.011

Abstract

Electrosynthesis process has been used for preparation of zinc sulfide nanoparticles. Zinc sulfide nanoparticles in different size and shapes were electrodeposited by electrolysis of zinc plate as anode in sodium sulfide solution. Effects of several reaction variables, such as electrolysis voltage, sulfide ion concentration as reactant, stirring rate of electrolyte solution and temperature on particle size of prepared zinc sulfide were investigated. The significance of these parameters in tuning the size of zinc sulfide particles was quantitatively evaluated by analysis of variance (ANOVA). Also, optimum conditions for synthesis of zinc sulfide nanoparticles via electrosynthesis reaction were proposed. The structure and composition of prepared nanoparticles under optimum condition was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis spectrophotometry techniques.

Keywords


[1] S.M. Pourmortazavi, M. Rahimi-Nasrabadi, A.A. Davoudi-Dehaghani, A. Javidan, M.M. Zahedi, S.S. Hajimirsadeghi,  Mater. Res. Bull. 47 (2012) 1045-1050.
[2] S.M. Pourmortazavi, S.S. Hajimirsadeghi, I. Kohsari, R. Fareghi Alamdari, M. Rahimi-Nasrabadi, Chem. Eng. Technol. 31 (2008) 1532-1535.
[3] S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, Mater. Manuf. Process. 24 (2009) 524-528.
[4] M. Salavati-Niasari, M.R. Loghman-Estarki, F. Davar, J. Alloy. Compd. 475 (2009) 782-788
[5] T. Jamieson, R. Bakhshi, D. Petrova D, R. Pocock, M. Imani, A.M. Seifalian, Biomaterials 28 (2007) 4717-4732.
[6] G.C. Morris, R. Vanderveen, Sol. Energ. Mat. Sol. Cells 26 (1992) 217-222
[7] W. Cai-feng, H. Bo, Y. Hou-hui, L. Wei-bing, Opt. Laser Technol. 43 (2011) 1453-1456
[8] A. Malik, A. Sêco, E. Fortunato, R. Martins,        Sens. Actuators, A: Phys. 67 (1998) 68-71.
[9] H. Moon, C. Nam, C. Kim, B. Kim, Mater. Res. Bull. 41 (2006) 2013-2017.
[10] D.J. Jovanović, I.L. Validžić, I.A. Janković, N. Bibić, J.M. Nedeljković, Mater. Lett. 61 (2007) 4396-4399.
[11] H. Yang, C. Huang, X. Su, A. Tang, J. Alloy Compd. 402 (2005) 274-277.
[12] R.F. Zhuo, H.T. Feng, D. Yan, J.T. Chen, J.J. Feng, J.Z. Liu, P.X. Yan, J. Cryst. Growth 310 (2008) 3240-3246.
[13] J. Li, Y. Xu, Y. Liu, D. Wu, Y. Sun, China Particuology 2 (2004) 266-269.
[14] P.J. Ross, Taguchi Techniques for Quality Engineering (McGraw- Hill, New York, 1988.
[15] S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabadi, Mater. Manuf. Process. 24 (2009) 524-528.
[16] S.M. Pourmortazavi, S.S. Hajimirsadeghi, M. Rahimi-Nasrabad, I. Kohsari, Chem. Eng. Comm. 198 (2011) 1182-1188.