1. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of Titanium Oxide Nanotube. Langmuir. 1998;14(12):3160-3.
2. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Titania Nanotubes Prepared by Chemical Processing. Adv Mater. 1999;11(15):1307-11.
3. Chen Q, Zhou W, Du GH, Peng LM. Trititanate Nanotubes Made via a Single Alkali Treatment. Adv Mater. 2002;14(17):1208-11.
4. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N. Formation mechanism of TiO2 nanotubes. Appl Phys Lett. 2003;82(2):281-3.
5. Yuan Z-Y, Zhou W, Su B-L. Hierarchical interlinked structure of titanium oxide nanofibers. Chem Commun. 2002(11):1202-3.
6. Yu J, Yu JC, Ho W, Wu L, Wang X. A Simple and General Method for the Synthesis of Multicomponent Na2V6O16•3H2O Single-Crystal Nanobelts. J Am Chem Soc. 2004;126(11):3422-3.
7. Zhang D, Qi L. Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chem Commun. 2005(21):2735.
8. Du GH, Chen Q, Che RC, Yuan ZY, Peng LM. Preparation and structure analysis of titanium oxide nanotubes. Appl Phys Lett. 2001;79(22):3702-4.
9. Safardoust-Hojaghan H, Salavati-Niasari M. Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J Clean Prod. 2017;148(Supplement C):31-6.
10. Lee E, Kim C, Jang J. High-Performance Förster Resonance Energy Transfer (FRET)-Based Dye-Sensitized Solar Cells: Rational Design of Quantum Dots for Wide Solar-Spectrum Utilization. Chem. Eur. J. 2013;19(31):10280-6.
11. Wu J-J, Liao W-P, Yoshimura M. Soft processing of hierarchical oxide nanostructures for dye-sensitized solar cell applications. Nano Energy. 2013;2(6):1354-72.
12. Smith YR, Subramanian V. Heterostructural Composites of TiO2Mesh−TiO2Nanoparticles Photosensitized with CdS: A New Flexible Photoanode for Solar Cells. J. Phys. Chem. C. 2011;115(16):8376-85.
13. Santra PK, Kamat PV. Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. J Am Chem Soc. 2012;134(5):2508-11.
14. Bayram S, Halaoui L. Amplification of Solar Energy Conversion in Quantum-Confined CdSe-Sensitized TiO2Photonic Crystals by Trapping Light. Part. Part. Syst. Char. 2013;30(8):706-14.
15. Liu F, Zhu J, Wei J, Li Y, Hu L, Huang Y, et al. Ex Situ CdSe Quantum Dot-Sensitized Solar Cells Employing Inorganic Ligand Exchange To Boost Efficiency. J. Phys. Chem. C. 2013;118(1):214-22.
16. Seabold JA, Shankar K, Wilke RHT, Paulose M, Varghese OK, Grimes CA, et al. Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays. Chem Mater. 2008;20(16):5266-73.
17. Tachan Z, Shalom M, Hod I, Rühle S, Tirosh S, Zaban A. PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells. J. Phys. Chem. C. 2011;115(13):6162-6.
18. Wang H, Kubo T, Nakazaki J, Kinoshita T, Segawa H. PbS-Quantum-Dot-Based Heterojunction Solar Cells Utilizing ZnO Nanowires for High External Quantum Efficiency in the Near-Infrared Region. J. Phys. Chem. Lett. 2013;4(15):2455-60.
19. Safardoust-Hojaghan H, Shakouri-Arani M, Salavati-Niasari M. A facile and reliable route to prepare of lead sulfate nanostructures in the presence of a new sulfur source. J. Mater. Sci. Mater. Electron. 2015;26(3):1518-24.
20. Safardoust-Hojaghan H, Shakouri-Arani M, Salavati-Niasari M. Structural and spectroscopic characterization of HgS nanoparticles prepared via simple microwave approach in presence of novel sulfuring agent. Trans. Nonferrous Met. Soc. China. 2016;26(3):759-66.
21. Cui Y, Wang J, Plissard SR, Cavalli A, Vu TTT, van Veldhoven RPJ, et al. Efficiency Enhancement of InP Nanowire Solar Cells by Surface Cleaning. Nano Lett. 2013;13(9):4113-7.
22. Yang L, McCue C, Zhang Q, Uchaker E, Mai Y, Cao G. Highly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe). Nanoscale. 2015;7(7):3173-80.