1. Timmer B, Olthuis W, Van Den Berg A. Ammonia sensors and their applications-a review. Sens Actuators B, 2005; 107(2); 666-677.
2. Risby T, Solga S. Current status of clinical breath analysis. Appl Phys B, 2006; 85(2-3); 421-426.
3. Abdulla S, Mathew T, Pullithadathil B. Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens Actuators B, 2015; 221; 1523-1534.
4. Kong F, Wang Y, Zhang J, Xia H, Zhu B, Wang Y, et al. The preparation and gas sensitivity study of polythiophene/SnO2 composites. Mater Sci Eng B, 2008; 150(1); 6-11.
5. Bai S, Zhang K, Sun J, Zhang D, Luo R, Li D, et al. Polythiophene-WO3 hybrid architectures for low-temperature H2S detection. Sens Actuators B, 2014; 197; 142-148.
6. Malekshahi Byranvand M. Recent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells. J Nanostruct, 2016; 6(1); 1-16.
7. Jalajerdi R, Ghanbari D. Microwave Synthesis and Magnetic Investigation of CuFe2O4 Nanoparticles and Poly Styrene-Carbon Nanotubes Composites. J Nanostruct, 2016; 6(4); 278-284.
8. Philip B, Xie J, Chandrasekhar A, Abraham J, Varadan V. A novel nanocomposite from multiwalled carbon nanotubes functionalized with a conducting polymer. Smart mater Struct, 2004; 13(2); 295.
9. Ai L, Liu Y, Zhang X, Ouyang X, Ge Z. A facile and template-free method for preparation of polythiophene microspheres and their dispersion for waterborne corrosion protection coatings. Synth Met, 2014; 191; 41-46.
10. Patil B, Jagadale A, Lokhande C. Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application. Synth Met, 2012; 162(15); 1400-1405.
11. Zhang H, Hu L, Tu J, Jiao S. Electrochemically assembling of polythiophene film in ionic liquids (ILs) microemulsions and its application in an electrochemical capacitor. Electrochim Acta, 2014; 120; 122-127.
12. Ma G, Liang X, Li L, Qiao R, Jiang D, Ding Y, et al. Cu-doped zinc oxide and its polythiophene composites: Preparation and antibacterial properties. Chemosphere, 2014; 100; 146-151.
13. Xu M, Zhang J, Wang S, Guo X, Xia H, Wang Y, et al. Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic-organic hybrids. Sens Actuators B, 2010; 146(1); 8-13.
14. Bhagiyalakshmi M, Hemalatha P, Palanichamy M, Jang HT. Adsorption, regeneration and interaction of CO2 with a polythiophene-carbon mesocomposite. Colloids Sur A, 2011; 374(1); 48-53.
15. Guo X, Kang Y, Yang T, Wang S. Low-temperature NO2 sensors based on polythiophene/WO3 organic-inorganic hybrids. Trans Nonferrous Met Soc. China, 2012; 22(2); 380-385.
16. Kymakis E, Amaratunga G. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett, 2002; 80(1); 112-114.
17. Liu J, Kadnikova E, Liu Y, McGehee M, Fréchet J. Polythiophene containing thermally removable solubilizing groups enhances the interface and the performance of polymer-titania hybrid solar cells. J Am Chem Soc, 2004; 126(31); 9486-9487.
18. Jang W, Yun J, Kim H, Lee Y. Preparation and characteristics of conducting polymer-coated multiwalled carbon nanotubes for a gas sensor. Carb Lett, 2011; 12(3); 162-166.
19. Whitby R, Korobeinyk A, Mikhalovsky S, Fukuda T, Maekawa T. Morphological effects of single-layer graphene oxide in the formation of covalently bonded polypyrrole composites using intermediate diisocyanate chemistry. J Nanopart Res, 2011; 13(10); 4829-4837.
20. Xiang C, Jiang D, Zou Y, Chu H, Qiu S, Zhang H, et al. Ammonia sensor based on polypyrrole-graphene nanocomposite decorated with titania nanoparticles. Ceram Int, 2015; 41(5); 6432-6438.
21. An K, Jeong S, Hwang H, Lee Y. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv Mater, 2004; 16(12); 1005-1009.
22. Singh S, Yadav B, Singh A, Dwivedi P. Synthesis of nanostructured iron-antimonate and its application as liquefied petroleum gas sensor. Adv Mater Lett. 2012; 3; 154-160.
23. Barkade S, Pinjari D, Nakate U, Singh A, Gogate P, Naik J, et al. Ultrasound assisted synthesis of polythiophene/SnO2 hybrid nanolatex particles for LPG sensing. Chem Eng Process, 2013; 74; 115-123.
24. Venkatesan R, Cindrella L. Semiconducting composite of chalcone-bridged polythiophene and titania, its ammonia vapor sensing property. Mater Sci Semicond Process, 2015; 34; 126-137.
25. Yun J, Im J, Kim H, Lee Y. Effect of oxyfluorination on gas sensing behavior of polyaniline-coated multi-walled carbon nanotubes. Appl Surf Sci, 2012; 258(8); 3462-3468.
26. Ngo C, Le Q, Ngo T, Nguyen D, Vu M. Surface modification and functionalization of carbon nanotube with some organic compounds. Adv Nat Sci: Nanosci Nanotechnol, 2013; 4(3); 035017.
27. Bachhav S, Patil D. Study of Polypyrrole-Coated MWCNT Nanocomposites for Ammonia Sensing at Room Temperature. J Mater Sci Chem Eng, 2015; 3(10); 30.
28. Fu C, Zhou H, Liu R, Huang Z, Chen J, Kuang Y. Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites. Mater Chem Phys, 2012; 132(2); 596-600.
29. Zhang B, Xu Y, Zheng Y, Dai L, Zhang M, Yang J, et al. A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells. Nanoscale Res Lett, 2011; 6(1); 1-9.
30. Guo H, Zhu H, Lin H, Zhang J, Yu L. Synthesis and characterization of multi-walled carbon nanotube/polythiophene composites. J Dispersion Sci Technol, 2008; 29(5); 706-710.
31. Dresselhaus M, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes. Phys Rep, 2005; 409(2); 47-99.
32. Cochet M, Louarn G, Quillard S, Buisson J, Lefrant S. Theoretical and experimental vibrational study of emeraldine in salt form. Part II. J Raman Spectrosc, 2000; 31(12); 1041-1049.
33. Karim M, Lee C, Lee M. Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. J Polym Sci Part A: Polym Chem, 2006; 44(18); 5283-5290.
34. Liu P, Wang X, Li H. Preparation of carboxylated carbon nanotubes/polypyrrole composite hollow microspheres via chemical oxidative interfacial polymerization and their electrochemical performance. Synth Met, 2013; 181; 72-78.
35. Zhao J, Xie Y, Le Z, Yu J, Gao Y, Zhong R, et al. Preparation and characterization of an electromagnetic material: The graphene nanosheet/polythiophene composite. Synth Met, 2013; 181; 110-116.
36. Zabihi O, Khodabandeh A, Mostafavi S. Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis. Polym Degrad Stab, 2012; 97(1); 3-13.
37. Gnanakan S, Rajasekhar M, Subramania A. Synthesis of polythiophene nanoparticles by surfactant-assisted dilute polymerization method for high performance redox supercapacitors. Int J Electrochem Sci, 2009; 4; 1289-1301.
38. Wang L, Jia X, Wang D, Zhu G, Li J. Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites. Synth Met, 2013; 181; 79-85.
39. Karim M, Yeum J, Lee M, Lim K. Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the γ-radiolysis polymerization method. Mater Chem Phys, 2008; 112(3); 779-782.
40. Van Hieu N, Thuy L, Chien N. Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sens Actuators B, 2008; 129(2); 888-895.
41. Yu Y, Ouyang C, Gao Y, Si Z, Chen W, Wang Z, et al. Synthesis and characterization of carbon nanotube/polypyrrole core-shell nanocomposites via in situ inverse microemulsion. J Polym Sci, Part A: Polym Chem, 2005; 43(23); 6105-6115.
42. Zhang X, Zhang J, Wang R, Zhu T, Liu Z. Surfactant-directed polypyrrole/cnt nanocables: Synthesis, characterization, and enhanced electrical properties. ChemPhysChem, 2004; 5(7); 998-1002.
43. Chen Y, Li Y, Wang H, Yang M. Gas sensitivity of a composite of multi-walled carbon nanotubes and polypyrrole prepared by vapor phase polymerization. Carbon, 2007; 45(2); 357-363.
44. Sahoo N, Jung Y, So H, Cho J. Polypyrrole coated carbon nanotubes: synthesis, characterization, and enhanced electrical properties. Synth Met, 2007; 157(8); 374-379.
45. Lokhande C, Gondkar P, Mane R, Shinde V, Han S. CBD grown ZnO-based gas sensors and dye-sensitized solar cells. J Alloys Compd, 2009; 475(1); 304-311.