1. Y. Mikhlina, Y. Tomashevicha, V. Tausonb, D. Vyalikhc, S. Molodtsovc, R. Szargan, A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J. Electron. Spectrosc. Relat. Phenom. 2005; 142 (1), 83-88.
2. Y. Vahidshad, M. N. Tahir, A. Iiraji-Zad, S. M. Mirkazemi, R. Ghazemzadeh, Hannah Huesmann, W. Tremel, Structural and optical study of Ga3+ substitution in CuInS2 nanoparticles synthesized by a one-pot facile method. J. Phys. Chem. C. 2014; 118 (42), 24670-24679.
3. J. Hu, Qi. Lu, B. Deng, K. Tang, Y. Qian, Y. Li, G. Zhou, X. Liu, A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorg. Chem. Commun. 1999; 2 (12), 569-571.
4. Y. Vahidshad, M. N. Tahir, A. Iiraji-Zad, S. M. Mirkazemi, R. Ghazemzadeh, W. Tremel, Structural and Optical Properties of Fe and Zn Substitution in CuInS2 Nanoparticles Synthesized by a One-Pot Facile Method. J. Mater. Chem. C. 2015; 3 (4), 889-898.
5. E. J. Silvester, T. W. Healy, F. Grieser, B. A. Sexton, Hydrothermal preparation and characterization of optically transparent colloidal chalcopyrite (CuFeS2). Langmuir. 1991; 7 (1), 19-22.
6. Y. Vahidshad, A. Iraji-Zad, R. Ghasemzadeh, S. M. Mirkazemi, A. Masoud, Structural and optical characterization of nanocrystalline CuAlS2 chalcopyrite synthesized by polyol method in autoclave. Int. J. Mod. Phys. B. 2012; 26 (31), 1250179 (1-12).
7. D. L. Young, J. Abushama, R. Noufi, X. Li, J. Keane, T. A. Gessert, J. S. Ward, M. Contreras, M. Symko-Davies, T. J. Coutts, Photovoltaic Specialists Conference. A new thin-film CuGaSe2/Cu(In,Ga)Se2 bifacial, tandem solar cell with both junctions formed simultaneously. 29th IEEE PV Specialists Conference-New Orleans, Louisiana May 20-24. 2002; 608-611.
8. J. Song, S. S. Li, C. H. Huang, T. J. Anderson, O. D. Crisalle,
Modeling and simulation of a CuGaSe2/Cu(In1-xGax)Se2 tandem solar cell. 3rd World Conference on Photovoltaic Energy Conversion. Osaka, 1, May 18-18. 2003; 555-558.
9. W. Ding, X. Wang, H. Peng, L. Hu, Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery. Mater. Chem. Phys. 2013; 137 (3), 872-876.
10. N. Tsujii, T. Mori, Y. Isoda, Phase stability and thermoelectric properties of CuFeS2-based magnetic semiconductor. J. Electron. Mater. 2014; 43 (6), 2371-2375.
11. S. Kang, B. S. Kwak, M. Park, K. M. Jeong, S.-M. Park, M. Kang, Synthesis of Core@shell structured CuFeS2@TiO2 magnetic nanomaterial and Its application for hydrogen production by methanol aqueous solution photosplitting. Bull. Korean Chem. Soc. 2014; 35 (9), 2813-2817.
12. P. Kumar, S. Uma, R. Nagarajan, Precursor driven one pot synthesis of wurtzite and chalcopyrite CuFeS2. Chem. Commun. 2013; 49 (66), 7316-7318.
13. Y.-H. A. Wang, N. Bao, A. Gupta, Shape-controlled synthesis of semiconducting CuFeS2 nanocrystals. Solid State Sci. 2010; 12 (3), 387-390.
14. Animesh Layek, Arka Dey, Joydeep Datta, Mrinmay Das, Partha pratim ray, Novel CuFeS2 pellet behaves like a portable signal transporting network: studies of immittance. RSC Adv. 2015; 5 (44), 34682-34689.
15. K.-T. Chen, C.-J. Chiang, D. Ray, Hydrothermal synthesis of chalcopyrite using an environmental friendly chelating agent. Mater. Lett. 2013; 98, 270-272.
16. S. D. Disale, S. S. Garje, A Convenient synthesis of nanocrystalline chalcopyrite, CuFeS2 using single-source precursors. Appl. Organometal. Chem. 2009; 23 (12), 492-497.
17. K. Sato, Y. Harada, M. Taguchi, S. Shin, A. Fujimori, Characterization of Fe 3d States in CuFeS2 by Resonant X-ray Emission Spectroscopy. Phys. Status Solidi A. 2009; 206 (5), 1096-1100.
18. L. Shi, C. Pei, Q. Li, Ordered arrays of shape tunable CuInS2 nanostructures, from nanotubes to Nano test tubes and nanowires. Nanoscale. 2010; 2 (10), 2126-2130.
19. D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang, Y. Lu, Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 2008; 130 (17), 5620-5621.
20. B. Li, L. Huang, M. Zhong, Z. Wei, J. Li, Electrical and magnetic properties of FeS2 and CuFeS2 nanoplates. RSC Advances. 2015; 5 (11), 91103-91107.
21. T. P. Mernagh, A. G. Trudu, A laser Raman microprobe study of some geologically important sulphide minerals. Chem. Geol. 1993; 103 (1-4), 113-127.
22. J. Łażewski, H. Neumann, K. Parlinski, Ab initio characterization of magnetic CuFeS2. Phys. Rev. B. 2004; 70 (19), 195206 (1-7).
23. K. Aup-Ngoen, T. Thongtem, S. Thongtem, A. Phuruangrat, Cyclic microwave-assisted synthesis of CuFeS2 nanoparticles using biomolecules as sources of sulfur and complexing agent. Mater. Lett. 2013; 101, 9-12.
24. M. H. Valdés, M. Berruet, A. Goossens, M. Vázquez, Spray deposition of CuInS2 on electrodeposited ZnO for low-cost solar cells. Surf. Coat. Tech. 2010; 204 (24), 3995-4000.
25. G. Will, E. Hinze, A. Rahman, M. Abdelrahman, Crystal structure analysis and refinement of Digenite, Cu1.8S, in the temperature range 20 to 500°C under controlled sulfur partial pressure. Eur. J. Mineral. 2002; 14 (3), 591-598.
26. S. T. Connor, C. M. Hsu, B. D. Weil, S. Aloni, Y. Cui, Phase Transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods. J. Am. Chem. Soc. 2009; 131 (13), 4962-4966.
27. T. Kuzuya, Y. Hamanaka, K. Itoh, T. Kino, K. Sumiyama, Y. Fukunaka, S. Hirai, Phase control and Its mechanism of CuInS2 nanoparticles. J. Colloid Interface Sci. 2012; 388 (1), 137-143.
28. M. B. Sigman, Jr., A. Ghezelbash, T. Hanrath, A. E. Saunders, F. Lee, B. A. Korgel, Solventless synthesis of monodisperse Cu2S nanorods, nanodisks. J. Am. Chem. Soc. 2003; 125 (51), 16050-16057.
29. B. Koo, R. N. Patel, B. A. Korgel, Wurtzite-chalcopyrite polytypism in CuInS2 nanodisks. Chem. Mater. 2009; 21 (9), 1962-1966.
30. J.-J. Wang, J.-S. Hu, Y.-G. Guo, L.i-J. Wan, Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic–inorganic hybrid photodetectors. NPG Asia Mater. 2012; 4 (8), 1-10.
31. S. Kumar, T. Nann, Shape control of II-VI semiconductor nanomaterials. Small. 2006; 2 (3), 316-329.
32. E. Witt, J. Kolny-Olesiak, Shape control of II-VI semiconductor nanomaterials. Chem. Eur. J. 2013; 19 (30), 9746-9753.
33. D. J. Vaughan, K. E. R. England, G. H. Kelsall, Q. Yin, Electrochemical oxidation of chalcopyrite (CuFeS2) and the related metal-enriched derivatives Cu4Fe5S8, Cu9Fe9S16, and Cu9Fe8S16. Am. Mineral. 1995; 80 (7-8), 725-731.
34. M. X. Wang, L. S. Wang, G. H. Yue, X. Wang, P. X. Yan, D. L. Peng, Single crystal of CuFeS2 nanowires synthesized through solventothermal process. Mater. Chem. Phys. 2009; 115 (1), 147-150.
35. D. F. Marrón, A. Martí and A. Luque, Thin-film intermediate band chalcopyrite solar cells. Thin Solid Films. 2009; 517 (7), 2452-2454.
36. Y. Mikhlin, Y. Tomashevich, V. Tauson, D. Vyalikhc, S. Molodtsov, R. Szargan, A comparative X-ray absorption near-Edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J. Electron Spectrosc. Relat. Phenom. 2005; 142 (1), 83-88.
37. T. Kambara, Optical properties of a magnetic semiconductor: chalcopyrite CuFeS. II. calculated Electronic structures of CuGaS2:Fe and CuFeS2. J. Phys. Soc. Jpn. 1974; 36 (6), 1625-1635.
38. J. A. Tossell, D. S. Urch, D. J. Vaughan and G. Wiech, The Electronic structure of CuFeS2, chalcopyrite, from X-ray emission and X-ray photoelectron spectroscopy and Xα calculations. J. Chern. Phys. 1982; 77 (1), 77-82.
39. C. Tablero and D. F. Marron, Analysis of the electronic structure of modified CuGaS2 with selected substitutional impurities: prospects for intermediate-band thin film solar cells based on Cu-containing chalcopyrites. J. Phys. Chem. C. 2010; 114 (6), 2756-2763.