Aqueous-phase oxidation of alcohols with green oxidants (Oxone and hydrogen peroxide) in the presence of MgFe2O4 magnetic nanoparticles as an efficient and reusable catalyst

Document Type : Research Paper

Authors

1 Department of Chemistry, Payame Noor University, Tehran, Iran

2 Department of Chemistry, University of Zanjan, Zanjan, Iran

3 Department of Chemistry, Abhar Branch, Islamic Azad University, Abhar, Iran

4 Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran

5 Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran

6 School of Mechanical Engineering, Yeungnam University, Gyeongsan, Republic of Korea

Abstract

Nanomagnetic MgFe2O4 is an active, stable, and reusable catalyst for the oxidation of alcohols. The oxidation of various primary and secondary alcohols has been examined and related corresponding products were obtained in good yields. The reactions were carried out in the presence of water as solvent and oxone (at room temperature) or H2O2 (at 60 ºC) as an oxidant. The catalyst was investigated by X-ray powder diffraction, scanning electron microscope, inductively coupled plasma and infrared techniques. Furthermore, the catalyst could be easily recovered and reused up to 7 runs without loss of activity.

Keywords


1. Wang X, Wang DZ. Aerobic oxidation of secondary benzylic alcohols and direct oxidative amidation of aryl aldehydes promoted by sodium hydride. Tetrahedron. 2011; 67(19): 3406-3411.
2. Aghahosseini H, Ramazani A, Asiabi PA, Gouranlou F, Hosseini F, Rezaei A, et al. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance. Nanochem Res. 2016; 1(2): 183-204.
3. March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure: Wiley; 1992.
4. Hudlicky M. Oxidations in organic chemistry: American Chemical Society; 1990.
5. Tojo G, Fernández MI. Oxidation of alcohols to aldehydes and ketones: a guide to current common practice: Springer Science & Business Media; 2006.
6. Kuang Y, Nabae Y, Hayakawa T, Kakimoto M-a. Nanoshell carbon-supported cobalt catalyst for the aerobic oxidation of alcohols in the presence of benzaldehyde: An efficient, solvent free protocol. Appl Catal, A. 2012; 423: 52-58.
7. Kobayashi S. Editorial Commentary: Water is Beautiful. Adv Synth Catal. 2002; 344(3‐4): 219-219.
8. Sato K, Aoki M, Ogawa M, Hashimoto T, Noyori R. A practical method for epoxidation of terminal olefins with 30% hydrogen peroxide under halide-free conditions. J Org Chem. 1996; 61(23): 8310-8311.
9. Sanderson WR. Cleaner industrial processes using hydrogen peroxide. Pure Appl Chem. 2000; 72(7): 1289-1304.
10. Anipsitakis GP, Dionysiou DD. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol. 2003; 37(20): 4790-4797.
11. Çimen Y, Türk H. Oxidation of 2, 3, 6-trimethylphenol with potassium peroxymonosulfate catalyzed by iron and cobalt phthalocyanine tetrasulfonates in a methanol–water mixture. Appl Catal, A. 2008; 340(1): 52-58.
12. Madhavan J, Maruthamuthu P, Murugesan S, Anandan S. Kinetic studies on visible light-assisted degradation of acid red 88 in presence of metal-ion coupled oxone reagent. Appl Catal, B. 2008; 83(1): 8-14.
13. Trost BM, Curran DP. Chemoselective oxidation of sulfides to sulfones with potassium hydrogen persulfate. Tetrahedron Lett. 1981; 22(14): 1287-1290.
14. Baumstark A, Beeson M, Vasquez P. Dimethyldioxirane: mechanism of benzaldehyde oxidation. Tetrahedron Lett. 1989; 30(41): 5567-5570.
15. Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett. 2008; 3(11): 397.
16. Hua Z, Chen R, Li C, Yang S, Lu M, Gu B, et al. CoFe2O4 nanowire arrays prepared by template-electrodeposition method and further oxidization. J Alloys Compd. 2007; 427(1): 199-203.
17. Taghavi Fardood S, Ramazani A. Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Coffee Powder Extract. J Nanostruct. 2016; 6(2): 167-171.
18. Corr SA, Rakovich YP, Gun’ko YK. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett. 2008; 3(3): 87-104.
19. Faraji M. Recent analytical applications of magnetic nanoparticles. Nanochem Res. 2016; 1(2): 264-290.
20. Qadri S, Ganoe A, Haik Y. Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. J Hazard Mater. 2009; 169(1): 318-323.
21. Khoobi M, Ramazani A, Hojjati Z, Shakeri R, Khoshneviszadeh M, Ardestani SK, et al. Synthesis of Novel 4 H-Chromenes Containing a Pyrimidine-2-Thione Function in the Presence of Fe3O4 Magnetic Nanoparticles and Study of Their Antioxidant Activity. Phosphorus, Sulfur Silicon Relat Elem. 2014; 189(10): 1586-1595.
22. Tarasi R, Khoobi M, Niknejad H, Ramazani A, Ma’mani L, Bahadorikhalili S, et al. β-cyclodextrin functionalized poly (5-amidoisophthalicacid) grafted Fe3O4 magnetic nanoparticles: A novel biocompatible Nonocomposite for targeted docetaxel delivery. J Magn Magn Mater. 2016; 417: 451–459.
23. Forster PM, Cheetham AK. Hybrid inorganic–organic solids: an emerging class of nanoporous catalysts. Top Catal. 2003; 24(1-4): 79-86.
24. Bensebaa F, Farah AA, Wang D, Bock C, Du X, Kung J, et al. Microwave synthesis of polymer-embedded Pt-Ru catalyst for direct methanol fuel cell. J Phys Chem B. 2005; 109(32): 15339-15344.
25. Willey RJ, Noirclerc P, Busca G. Preparation and characterization of magnesium chromite and magnesium ferrite aerogels. Chem Eng Commun. 1993; 123(1): 1-16.
26. Hamdeh HH, Ho J, Oliver S, Willey R, Oliveri G. Magnetic properties of partially-inverted zinc ferrite aerogel powders. J Appl Phys. 1997; 81(4): 1851-1857.
27. Thant A, Srimala S, Kaung P, Itoh M, Radzali O, Fauzi MA. Low temperature synthesis of MgFe2O4 soft ferrite nanocrystallites. J Aust Ceram Soc. 2010; 46(1): 11-14.
28. Maensiri S, Sangmanee M, Wiengmoon A. Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res Lett. 2008; 4(3): 221-228.
29. Bangale SV, Patil D, Bamane S. Preparation and electrical properties of nanocrystalline MgFe2O4 oxide by combustion route. Arch Appl Sci Res. 2011; 3(5): 506-513.
30. Nabiyouni G, Sharifi S, Ghanbari D, Salavati-Niasari M. A Simple Precipitation Method for Synthesis CoFe2O4 Nanoparticles. J Nanostruct. 2014; 4(3): 317-323.
31. Nabiyouni G, Ghanbari D, Karimzadeh S, Samani Ghalehtaki B. Sono-chemical Synthesis Fe3O4-Mg(OH)2 Nanocomposite and Its Photo-catalyst Investigation in Methyl Orange Degradation. J Nanostruct. 2014; 4(4): 467-474.
32. Mu B, Liu P, Dong Y, Lu C, Wu X. Superparamagnetic pH‐sensitive multilayer hybrid hollow microspheres for targeted controlled release. J Polym Sci, Part A: Polym Chem. 2010; 48(14): 3135-3144.
33. Sadri F, Ramazani A, Massoudi A, Khoobi M, Tarasi R, Shafiee A, et al. Green oxidation of alcohols by using hydrogen peroxide in water in the presence of magnetic Fe3O4 nanoparticles as recoverable catalyst. Green Chem Lett Rev. 2014; 7(3): 257-264.