1. Bello A, Fabiane M, Dodoo-Arhin D, Ozoemena KI, Manyala N. Silver nanoparticles decorated on a three-dimensional graphene scaffold for electrochemical applications. J Phys Chem Solids. 2014;75(1):109–14.
2. Novoselov KS, Geim AK, Morozov S V, Jiang D, Zhang Y, Dubonos SV and, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666–9.
3. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3(2):101–5.
4. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7.
5. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146(9):351–5.
6. Jin Y, Jia M, Zhang M, Wen Q. Preparation of stable aqueous dispersion of graphene nanosheets and their electrochemical capacitive properties. Appl Surf Sci. 2013;264:787–93.
7. Behpour M, Meshki M, Masoum S. Study and electrochemical determination of tyrosine at graphene nanosheets composite film modified glassy carbon electrode. J Nanostruct. 2013;3(2):243–51.
8. Mazloum-Ardakani M, Khoshroo A, Hosseinzadeh L. Application of graphene to modified ionic liquid graphite composite and its enhanced electrochemical catalysis properties for levodopa oxidation. Sensors Actuators B Chem. 2014;204:282–8.
9. Mazloum-Ardakani M, Hosseinzadeh L, Taleat Z. Synthesis and electrocatalytic effect of Ag@Pt core–shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor. Biosens Bioelectron. 2015 Dec 15;74(0):30–6.
10. Wang R, Lang J, Zhang P, Lin Z, Yan X. Fast and Large Lithium Storage in 3D Porous VN Nanowires–Graphene Composite as a Superior Anode Toward High‐Performance Hybrid Supercapacitors. Adv Funct Mater. 2015;25(15):2270–8.
11. Liu M, Liu R, Chen W. Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron. 2013;45:206–12.
12. Song Y, He Z, Zhu H, Hou H, Wang L. Electrochemical and electrocatalytic properties of cobalt nanoparticles deposited on graphene modified glassy carbon electrode: Application to some amino acids detection. Electrochim Acta. 2011;58:757–63.
13. Rangheard C, de Julián Fernández C, Phua P-H, Hoorn J, Lefort L, de Vries JG. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles. Dalt Trans. 2010;39(36):8464–71.
14. Li L, Wang A, Qiao B, Lin J, Huang Y, Wang X, et al. Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism. J Catal. 2013;299:90–100.
15. Zhu J, Kailasam K, Fischer A, Thomas A. Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase. ACS Catal. 2011;1(4):342–7.
16. Bhakta AK, Mascarenhas RJ, D’Souza OJ, Satpati AK, Detriche S, Mekhalif Z, et al. Iron nanoparticles decorated multi-wall carbon nanotubes modified carbon paste electrode as an electrochemical sensor for the simultaneous determination of uric acid in the presence of ascorbic acid, dopamine and l-tyrosine. Mater Sci Eng C. 2015 Dec 1;57:328–37.
17. Yuan B, Xu C, Liu L, Zhang Q, Ji S, Pi L, et al. Cu2O/NiOx/graphene oxide modified glassy carbon electrode for the enhanced electrochemical oxidation of reduced glutathione and nonenzyme glucose sensor. Electrochim Acta. 2013;104:78–83.
18. Mazloum-Ardakani M, Hosseinzadeh L, Khoshroo A, Naeimi H, Moradian M. Simultaneous Determination of Isoproterenol, Acetaminophen and Folic Acid Using a Novel Nanostructure-Based Electrochemical Sensor. Electroanalysis. 2014;26(2):275–84.
19. Mazloum-Ardakani M, Khoshroo A. High performance electrochemical sensor based on fullerene-functionalized carbon nanotubes/Ionic liquid: Determination of some catecholamines. Electrochem commun. 2014;42(0):9–12.
20. Mazloum-Ardakani M, Khoshroo A. Synthesis of TiO2 Nanoparticle and its Application to Graphite Composite Electrode for Hydroxylamine Oxidation. J Nanostruct. 2013;3:269–75.
21. Banks WA. The blood–brain barrier as a regulatory interface in the gut–brain axes. Physiol Behav. 2006;89(4):472–6.
22. Du J, Shen L, Lu J. Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material. Anal Chim Acta. 2003;489(2):183–9.
23. Wang A-J, Xu J-J, Zhang Q, Chen H-Y. The use of poly (dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis. Talanta. 2006;69(1):210–5.
24. Bulatov A V, Petrova A V, Vishnikin AB, Moskvin AL, Moskvin LN. Stepwise injection spectrophotometric determination of epinephrine. Talanta. 2012;96:62–7.
25. Wang L, Bai J, Huang P, Wang H, Zhang L, Zhao Y. Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine. Electrochem commun. 2006;8(6):1035–40.
26. Mazloum-Ardakani M, Ahmadi SH, Mahmoudabadi ZS, Khoshroo A, Heydar KT. Electrochemical and catalytic investigations of epinephrine, acetaminophen and folic acid at the surface of titanium dioxide nanoparticle-modified carbon paste electrode. Ionics. 2014;20(12):1757–65.
27. Marcano DC, Kosynkin D V, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806–14.
28. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, et al. Graphene‐based materials: synthesis, characterization, properties, and applications. Small. 2011;7(14):1876–902.
29. Lomeda JR, Doyle CD, Kosynkin D V, Hwang W-F, Tour JM. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc. 2008;130(48):16201–6.
30. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd ed. Wiley; 2000.
31. Galus Z, Reynolds GF, Marcinkiewicz S. Fundamentals of electrochemical analysis. Vol. 328. Ellis Horwood New York; 1976.