[1] Mu G, Shen H, Qiu J, Gu M. Microwave absorption properties of composite powders with low density. Appl. Surf. Sci. 2006; 253(4): 2278-81.
[2] Ma Z, Wang J, Liu Q, Yuan J. Microwave absorption of electroless Ni–Co–P-coated SiO 2 powder. Appl. Surf. Sci. 2009; 255(13): 6629-33.
[3] Liu Y, Feng Y, Wu X, Han X. Microwave absorption properties of La doped barium titanate in X-band. J. Alloys Compd.. 2009; 472(1): 441-5.
[4] Liu Y, Zhang Z, Xiao S, Qiang C, Tian L, Xu J. Preparation and properties of cobalt oxides coated carbon fibers as microwave-absorbing materials. Appl. Surf. Sci. 2011; 257(17): 7678-83.
[5] Ghasemi A, Hossienpour A, Morisako A, Saatchi A, Salehi M. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. J. Magn. Magn. Mater. 2006; 302(2): 429-35.
[6] Liu L, Duan Y, Ma L, Liu S, Yu Z. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black. Appl. Surf. Sci. 2010; 257(3): 842-6.
[7] Nanni F, Travaglia P, Valentini M. Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos. Sci. Technol. 2009; 69(3): 485-90.
[8] Zhao N, Zou T, Shi C, Li J, Guo W. Microwave absorbing properties of activated carbon-fiber felt screens (vertical-arranged carbon fibers)/epoxy resin composites. Mater. Sci. Eng., B 2006; 127(2): 207-11.
[9] Zhao DL, Chi WD, Shen ZM, editors. Preparation of carbon nanotube reinforced epoxy resin coating and its microwave characteristics. Key Eng. Mater; 2007: Trans Tech Publ.
[10] Xie W, Cheng H, Chu Z, Chen Z, Long C. Effect of carbonization temperature on the structure and microwave absorbing properties of hollow carbon fibres. Ceram. Int. 2011; 37(6): 1947-51.
[11] Lin H, Zhu H, Guo H, Yu L. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes. Mater. Lett. 2007; 61(16): 3547-50.
[12] Fan Z, Luo G, Zhang Z, Zhou L, Wei F. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater. Sci. Eng., B. 2006; 132(1): 85-9.
[13] Chin WS. Development of the composite RAS (radar absorbing structure) for the X-band frequency range. Compos. Struct. 2007; 77(4): 457-65.
[14] Neo C, Varadan VK. Optimization of carbon fiber composite for microwave absorber. Electromagnetic Compatibility, IEEE Transactions on. 2004; 46(1): 102-6.
[15] Su C-I, Li J-Y, Wang C-L. Absorption characteristics of phenolic-based carbon fiber absorbents. Text. rese. j. 2005; 75(2): 154-6.
[16] Shen G, Xu M, Xu Z. Double-layer microwave absorber based on ferrite and short carbon fiber composites. Mater. Chem. Phys. 2007; 105(2): 268-72.
[17] Li Y, Chen C, Pan X, Ni Y, Zhang S, Huang J, et al. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin. Phys B: Cond. Matt. 2009; 404(8): 1343-6.
[18] Anagnostou MN, Anagnostou EN, Krajewski W. High-resolution rainfall rate and DSD estimation from X-band polarimetric radar measurements. Bulletin of the American Meteorological Society, Seattle, WA Berlin: America Meteorologi Soci. 2004: 599-608.
[19] Joon AS, Seung-Ho A, Ho AS, Aikio J, Liu A, Akage Y, et al. 2004 Index IEEE Photonics Technology Letters Vol. 16.
[20] Decaesteke T, Villard M, Bois J, Laforge E, Chaubet M, Huguet P. X-band high PAE MMIC HPA for space radar applications. 1996.
[21] Tibbetts GG, Lake ML, Strong KL, Rice BP. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 2007; 67(7): 1709-18.
[22] Thostenson ET, Chou T-W. Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D: Appl. Phys. 2002; 35(16): L77.
[23] Saltysiak B, Johnson W, Kumar S, Zeng J, editors. Nanofiber reinforcement of PMMA—the hope and the reality. Proc 17th ASC Conf, West Lafayette; 2002.
[24] Xia H, Wang Q. Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem. Mater. 2002; 14(5): 2158-65.
[25] Vinoy KJ, Jha RM. Radar absorbing materials- From theory to design and characterization(Book). Boston, MA: Kluwer Academic Publishers, 1996.
[26] Bai X, Zhai Y, Zhang Y. Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. A. 2011; 115(23): 11673-7.
[27] Maeda T, Sugimoto S, Kagotani T, Tezuka N, Inomata K. Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds. J. Magn. Magn. Mater. 2004; 281(2): 195-205.
[28] De Bellis G, De Rosa I, Dinescu A, Sarto M, Tamburrano A, editors. Electromagnetic absorbing nanocomposites including carbon fibers, nanotubes and graphene nanoplatelets. Electromagnetic Compatibility (EMC), 2010 IEEE International Symposium on; 2010: IEEE.
[29] De Rosa IM, Dinescu A, Sarasini F, Sarto MS, Tamburrano A. Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers. Compos. Sci. Technol. 2010; 70(1): 102-9