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In this work, we were synthesized 5%Ag/Graphene nanocomposites via an 
easy and green route. The as-prepared nanocatalysts were characterized 
by XRD, SEM, TEM, EDX and EDX mapping. The catalytic activity of 
5%Ag/Graphene nanocomposite with H2O2 was examined in numerous 
alcohols oxidation reaction.  To achieve the best conversion of the benzyl 
alcohol, different parameters such as the amount of nanocatalyst, oxidant 
type, solvent and amount of oxidant were examined. The results showed 
that the reaction time for alcohols with a substituent in the para position 
is shorter and a higher conversion of alcohols is obtained with these 
substrates. This nanocomposite can be efficiently recovered and reused five 
times without significantly loss in catalytic activity. Recoverability of the 
nanocatalyst, short time, high conversion, eco-friendly and economical are 
some advantages of this reaction. A hot filtration test was determined that 
5%Ag/graphene nanocomposite operates heterogeneously in the oxidation 
reaction. Due to the high value of green syntheses in the last decade, we 
used pomegranate juice as a reducing agent. Pomegranate juice was used 
not only as a reducing agent but also as a surfactant. On the other hand, 
hydrogen peroxide was used as a non-toxic and green oxidizing agent.

INTRODUCTION
Oxidation reactions are one of the most 

significant reactions in organic chemistry and 
provide significant route for the preparation and 
correction of functional groups [1]. In synthetic 
organic chemistry, selective oxidation of alcohols 
is investigated as one of the most important 
and fundamental chemical reactions for the 
large−scale preparation of industrial compounds 
such as aldehydes and ketones. These related 
carbonyl compounds can be used to prepare 
pharmaceuticals, insecticides, cosmetics, dyes, 

agricultural chemicals, etc [2,3]. Generally, the 
oxidation of alcohols has been carried out using 
of toxic and corrosive oxidants such as ammonium 
permanganate, pyridinium chlorochromate (PCC), 
chromium trioxide, pyridinium dichromate (PDC), 
tert-butyl hydroperoxide, KMnO4, ClO2, H5IO6 and 
NaClO, etc. which are not only hazardous and 
expensive reagents, but also causes economic 
and environmental problems because of the 
production of large amounts of toxic by-products 
[4-6]. Thus, utilization of stable, clean and 
economic oxidizing reagent for this reaction could 
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be an attractive challenge in this regard. H2O2 is 
attractive as a cheap, safe, readily available and 
environmentally friendly oxidant for producing 
active oxidation species in aqueous solution, with 
water as the byproduct [7]. In addition, it has been 
made clear that, reactions in H2O can facilitate 
availability to various reactivity and selectivity 
methods compared with those observed in current 
organic solvents because of its significant physical 
and chemical properties [8]. 

Although, in previous research, different 
catalytic systems have been suggested for 
improving the chemical transformation of alcohols 
to aldehydes, the development of new effective 
oxidation reactions as heterogeneous systems in 
terms of economic and environmental reasons 
would be very valuable [9-12]. 

Graphene, a new 2-dimensional carbon 
substance, has attracted a lot of attention as 
optimal supporting substances because of 
its unique electronic, physical and chemical 
properties [13-15]. In recent years, various 
graphene-based nanocomposites, comprising 
different metal oxides and nanoparticles such as 
Ag, Au, Pt, Pd and TiO2, have started to become 
a new field of nanoscience and nanotechnology 
[16-20]. The synergy of Ag nanoparticles and 
graphene, leads to some superior catalytic, optical 
and electronic properties. Therefore, substances 
with improved performance may be produced and 
used in applications, such as catalysis, sensors, 
antimicrobial coating etc. [21-24]. 

Due to the high conductivity, powerful 
ultraviolet-visible absorption ability and catalytic 
reactivity, the Ag nanoparticles have been used 
in many area, such as electronic devices, surface 
enhanced Raman scattering, biomarkers [25, 26].                 
There are several reports regarding the synthesis 
methods of silver/graphene nanocomposites in 
the literature [27-29]. However, all the methods 
require complex processes, long reaction times 
and NaBH4 as a reductant, which is highly toxic 
[30]. According to the limited reasons, it is still 
necessary to develop a simple, efficient and 
green method to fabricate silver/graphene 
nanocomposites. Herein, we utilized pomegranate 
juice as a natural reductant to synthesize Ag/
graphene nanocomposite. This research shows a 
green and economic method for the synthesis of 
Ag/graphene nanocomposite. Pomegranate juice 
is a potential source of anthocyanin. Anthocyanins 
are pigments found in red fruits. Pomegranate 

juice was used as reducing agent for reduce Ag+ 
to Ag.

Based on our findings in previous works on the 
synthesis and application of heterogonous catalysts 
in organic reactions, [31-36] in this research, 
we designed, prepared, and characterized Ag 
nanoparticles supported on graphene and then 
employed as a stable and efficient heterogeneous 
catalyst for oxidation of alcohols.

MATERIALS AND METHODS
Materials and Characterization

All chemicals employed were of analytical 
grade, were used as received without any further 
purification, and were obtained from Merck. 
Pomegranate juice was obtained from Shiraz in 
Iran. X-ray powder diffraction (XRD) patterns of the 
samples were recorded using a Bruker Advance 
D8 Diffractometer with Cu Kα radiation (λ=0.154 
nm). Chemical analysis of the samples was done 
by energy dispersive X-ray (EDX) analysis joined to 
a Philips XL 30 scanning electron microscope. The 
SEM measurements were performed on a Holland 
Philips XL30 microscope. Transmission electron 
microscopy (TEM) measurements were performed 
on a LEO 912 AB TEM operated at 120 kV. Products 
of these oxidation reactions were analyzed by 
GC (Shimadzu 8A) and were identified by GC-MS 
(Finnigan TSQ-7000).

Preparation of catalysts
Preparation of graphene oxide

Graphene oxide (GO) was prepared according to 
an improved Hummer method [37], using graphite 
powder as the starting material. In a typical 
procedure, 3 g of graphite powder, 18 ml of HNO3 
(67 wt%), and 46 ml of H2SO4 (98 wt%) were mixed 
and strongly stirred with magnetic stirring in the 
range of 0–5 °C for 15 min in a 500 ml reaction flask 
immersed in an ice-water bath. Then 6 g of KMnO4 
was gradually added with continuous stirring 
to the above solution within 15 min. After this, 
the obtained solution was stirred continuously 
for 2 h in an ice-water bath and maintained the 
temperature in the range of 10–15 °C, and then 
the resulting solution was stirred continuously at 
35 °C for 30 min. Subsequently, 138 ml of distilled 
water was gradually added to the suspension for 
10 min, and then the temperature was maintained 
in the range of 95–98 °C for 30 min. Afterwards, 
the obtained solution was diluted by 200 ml of 
warm distilled water (40 °C) and treated with 18 ml 
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of H2O2 (30%) to reduce remaining permanganate 
to soluble manganese ions. Finally, graphene oxide 
was obtained after centrifugal separation, washed 
with distilled water and thoroughly dried in a 
vacuum oven at 60 °C for 24 h.

Preparation of Ag/graphene nanocomposites
Ag/graphene nanocomposites were 

synthesized by reducing silver ions and graphene 
oxide simultarieously. In a typical procedure, 0.1 
g of prepared graphene oxide was dispersed in 
deionized water (50 ml) by ultrasonication for 
30 min to synthesize a stable graphene oxide 
suspension.  An aqueous solution of AgNO3 
was added slowly to the resulting suspension 
with magnetic stirring for 30 min. Then 50 ml 
pomegranate juice was gradually added into the 
above mixture. The resulting mixture was stirred 
for 12 h. The reduction of Ag from Ag+ to Ag0 was 
confirmed by the darkening of the mixture. The 
black solid precipitates were filtered, washed with 
deionized water and ethanol for several times. 
Finally, the as-prepared nanocomposites were 

dried in a vacuum at 60 °C for 48 h.  

Experimental procedure
First, benzyl alcohol (1 mmol) and H2O2 (3 mmol) 

were dissolved in 2 ml H2O, subsequently, 0.05 g 
catalyst (5%Ag/graphene nanocomposite) was 
added, and the mixture was stirred continuously 
at 80 °C. The progress of the reaction was followed 
by TLC. After the completion of the reaction, the 
resulting mixture was cooled down to room 
temperature, and the nanocomposite was filtered 
by centrifugation and washed with solvent for 
several times. The product was extracted from 
the reaction mixture by using ethyl acetate and 
subjected to GC analysis.

RESULTS AND DISCUSSION 
Characterization of the catalysts

The structural and morphological information of 
the synthesized compound was investigated using 
different standard physicochemical techniques 
such as XRD, TEM, FE−SEM, EDX, and EDX mapping. 
The crystalline structure of graphene oxide 

Fig. 1. XRD patterns of graphene oxide (GO) (a), 5%Ag/graphene nanocomposite (b).
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(GO) and 5%Ag/graphene nanocomposite was 
determined using XRD analysis, and the diffraction 
patterns are illustrated in Fig. 1. As shown in Fig. 
1a, graphene oxide display a sharp diffraction peak 
at 2θ=11.9° and a very low intensity peak near 

2θ=41.9° which are corresponding to (002) and 
(101) crystal planes respectively [30]. However, 
the Ag/graphene nanocomposite prepared by 
ultrasound irradiation, revealed this diffraction 
peak to disappear and a new broad scattering peak 

Fig. 2. FE-SEM image of 5%Ag/graphene nanocomposite (a), TEM image of 
5%Ag/graphene nanocomposite.
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appears at a 2θ value of 26.8 corresponding to the 
(002) plane as shown in Fig. 1b. This indicates that 
the reduction of the oxygen functional group has 
occurred in the graphene oxide structure. In the 
pattern of 5%Ag/graphene nanocomposite, the 
intense four main diffraction peaks at 2θ=38.1°, 
44.4°, 64.8° and 77.8° which are corresponding to 
(111), (200), (220) and (311) diffraction peaks of 
the face-centered cubic silver crystal, which is in 
agreement with the reported data (JCPDS File No, 
04-0783).  The results indicate the Ag/graphene 

nanocomposite to be successfully prepared 
with pomegranate juice as green reductant. It 
was suggested that graphene oxide (GO) and 
Ag ions have been reduced to graphene and Ag 
nanoparticles.  

The surface morphology and particle size 
of 5%Ag/graphene nanocomposites were 
investigated using SEM and TEM analyses (Fig. 
2). As shown SEM image, spherical morphology 
with an average diameter of about 50-60 nm for 
nanocomposite was obtained (Fig. 2a). Also, from 

Fig. 4. EDX elemental maps of 5%Ag/graphene nanocomposite.

Fig. 3. EDX analysis of 5%Ag/graphene nanocomposite.
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the resulting TEM image, spherical nanoparticles 
with fairly uniform shape and size were showed 
(Fig. 2b).

The elemental analysis of 5%Ag/graphene 
nanocomposite was carried out using Energy 
dispersive X‐ray analysis (EDX) that is presented 
in Fig. 3. The presence of peaks corresponding to 

expected elements of C, and Ag in the structure 
confirmed the successful preparation of 5%Ag/
graphene nanocomposite. In addition, the 
elemental mapping results of the synthesized 
nanocomposite revealed that C, and Ag was 
uniformly distributed throughout the structure 
(Fig. 4).

O

HOH Condition

Fig. 6. Effect of catalyst amount on oxidation reaction of benzyl alcohol, Reaction conditions: benzyl alcohol (1 
mmol), H2O2 (3 mmol), water (2 ml), Temp: 80 °C, Time: 5 h.

Fig. 5. Oxidation reaction of benzyl alcohol with 5%Ag/graphene nanocomposite as catalyst in 
various condition.

n−hexane

 

Table 1. Effect of solvents in the oxidation reaction of benzyl alcohol [a].

n−hexane
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Catalytic oxidation of benzyl alcohol
The catalytic activity of the as synthesized 

5%Ag/graphene nanocomposite has been studied 
for the oxidation reaction of alcohols. Initially, to 
optimize reaction condition for the oxidation of 
alcohols, benzyl alcohol was chosen as a model 
substrate, and the oxidation reaction was carried 
out in various conditions with 5%Ag/graphene 
nanocomposite as catalyst and hydrogen peroxide 
as oxidant (Fig. 5).

Based on the obtained results in absence of 
any catalyst a negligible conversion was observed 
after 5 h. Furthermore, the amount of the catalyst 
was studied. With increasing, the amount of 
the catalyst to 0.05 g an enhancement in the 

conversion of the benzyl alcohol was seen (Fig. 6), 
which proved the high influence of the presence 
of catalyst in the reaction. The results show that 
the best conversion was obtained when 0.05 g of 
catalyst was used.  In values higher than 0.05 g 
no significant effect was seen on the conversion 
of benzyl alcohol, but in amounts less than 
5%Ag/graphene nanocomposite showed lower 
conversion of benzyl alcohol at the same reaction 
conditions. Conversion and selectivity were 
determined by GC.

To choose the best solvent, we used 
five solvents includes toluene, acetonitrile, 
chloroform, n-hexane and water (Table 1). The 
obtained results demonstrated that water and 

Table 2. Oxidation of benzyl alcohol with 5%Ag/graphene nanocomposite in the presence of various oxidants [a].

Fig. 7. The effect of the amount of oxidant in the oxidation reaction of benzyl alcohol. Reaction conditions: benzyl alcohol 
(1 mmol), 0.05 g catalyst, water (2 ml), Time: 5 h, Temp: 80 °C.
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acetonitrile were better than toluene, chloroform 
and n-hexane. After 5 h, the model reaction 
in water was effectively complete with 97% 
conversion for benzyl alcohol. Acetonitrile with 
high dielectric constant facilitates the clash and 
contact of oxygen source, benzyl alcohol, and 

nanocomposite, that increase the adsorption 
of reactants on nanocomposite surface and as a 
result, obtained the better conversion as compared 
with the other solvents. In relation to chloroform, 
lone pair of electrons on chlorine binds to the 
sites nanocomposite, and thereby lower yield was 

Table 3. Catalytic activity evaluation of the 5%Ag/graphene nanocomposite for the oxidation reaction of alcohols with H2O2 under 
optimal reaction conditions [a].
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obtained. The lower yield obtained with n-hexane 
and toluene (non-polar solvents) is due to the low 
solubility of the oxidant in these solvents and as a 
result, adsorbed solvent molecules occupy part of 
the active sites of the nanocomposite.

To study the oxidant effect, the oxidation 
reaction was performed in the presence of various 
oxidants including hydrogen peroxide (H2O2), 
TBHP (tert-buthyl hydrogen peroxide), and PhIO 
(iodosyl benzene) that was prepared according 
to the literature [38]. In these experiments, TBHP 
showed conversion of 97% with 68% selectivity 
for benzaldehyde in 4 h (Table 2, entry 1), benzoic 
acid is a by-product of over-oxidation. With H2O2, 
benzaldehyde was produced in 97% conversion and 
100% selectivity after 5 h (Table 1, entry 2). 87% 
conversion and 89% selectivity for benzaldehyde 
in 5 h was obtained by PhIO (Table 1, entry 3). 
Therefore, the highest conversion and selectivity 
of benzaldehyde was achieved with H2O2 and was 
chosen as the optimal oxidant.

Afterward, the effect of the amount of 
H2O2 (0 mmol, 1 mmol, 3 mmol, and 5 mmol) 

on the catalytic efficiency of 5%Ag/graphene 
nanocomposite was investigated. The results are 
depicted in Fig. 7. Benzyl alcohol as a reactant 
was slightly oxidized to the main product in the 
absence of H2O2. The conversion of benzyl alcohol 
enhances significantly with increasing the amount 
of H2O2, whereas the selectivity of benzaldehyde 
remains constant. With growing the amount 
of oxidant, more than 3 mmol did not have any 
remarkable impact on the conversion of benzyl 
alcohol.

To evaluate the efficiency and the performance 
of 5%Ag/graphene nanocomposite for the 
oxidation reaction of the alcohols, numerous 
substituents (e.g., chloro, nitro, methyl, and 
methoxy) in the aromatic ring were considered. 
The results shown in Table 3 (Entries 1-14) clearly 
indicated that electronic effects, steric hindrance, 
and the position of substituent groups play an 
important role in the oxidation reaction of various 
alcohols. 

Substituted benzyl alcohols bearing electron-
donating groups such as OCH3 and CH3 were 
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significantly converted into its corresponding 
aldehydes with high conversion (Table 3, Entries 
2−4). The compounds with electron-withdrawing 
groups such as Cl, Br, and NO2 were also oxidized 
selectively and converted into the desirable 
products in lower conversion because of the lower 

electron density on the aromatic ring (Table 3, 
Entries 5−7). However, the results showed that 
benzyl alcohols containing substituents at the 
4-para position of the aromatic ring compared to 
the substituents at the 2-ortho and 3-meta position 
of the ring transformed to the desirable products 

C
on

ve
rs

io
n 

(%
)

Run

Fig. 9. SEM of 5%Ag/graphene nanocomposite after 5 cycles.

Fig. 8. Recyclability of 5%Ag/graphene nanocomposite in the oxidation reaction of benzyl alcohol.
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in higher yield (Table 3, Entries 8−12). Additionally, 
heteroaromatic alcohols was successfully oxidized 
to desired products and gave the corresponding 
aldehydes in high conversion (Table 3, Entries 13, 
14).

A hot filtration test was performed in the 
oxidation reaction of alcohols to distinguish 
whether 5%Ag/graphene nanocomposite act as 
a heterogeneous catalyst. For this purpose, after 
50% progress of reaction, nanocomposite was 
removed from the reaction mixture and reaction 
was continued without nanocomposite for 5 h. 
The GC results demonstrated that in the absence 
of 5%Ag/graphene nanocomposite as catalyst, 

the oxidation reaction was completely stopped. 
Therefore, according to the results, it was 
determined that 5%Ag/graphene nanocomposite 
operates heterogeneously in the oxidation 
reaction.

Reusability is of remarkable specifications of a 
heterogeneous catalyst that should be studied. For 
this purpose, the reusability of 5%Ag/graphene 
nanocomposite was assessed for the oxidation 
reaction of benzyl alcohol under optimized 
conditions (Fig. 8). After the completion of the 
reaction, the catalyst was divided from the reaction 
mixture, thoroughly washed with distilled water, 
and then dried in the oven. Nanocomposite can 

 

Triple−shell 

/HAP−10, 

)
Solvent−free, 

Solvent−free, 

 

Table 4. Comparison of the activity of 5%Ag/graphene nanocomposite with some previous catalytic systems in the 
oxidation reaction of benzyl alcohol.
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be reused at least five times without observation 
of remarkable loss in its catalytic efficiency and 
conversion.

The SEM image of the reused catalyst after 
the 5th run (Fig. 9) demonstrated no significant 
changes compared to the fresh catalyst, and the 
nanocomposites are still nearly spherical. 

The catalytic efficiency of 5%Ag/graphene 
nanocomposite was compared with that of other 
literature reported catalysts toward the oxidation 
reaction of alcohols. It was demonstrated that 
5%Ag/graphene nanocomposite is the most 
favorable catalyst for the oxidation of benzyl 
alcohol, leading to the formation of products in 
good selectivity and high conversion (Table 4).

CONCLUSION 
In this present study, we have successfully 

synthesized and employed highly efficient, stable, 
non-toxic and environmentally benign supported 
silver nanoparticles on graphene as a nanocatalyst 
in the alcohols oxidation reaction with H2O2. This 
nanocomposite oxidizes a wide range of alcohols 
under mild conditions and produces of the 
corresponding aldehydes with excellent selectivity. 
Moreover, the nanocomposite could be facilely 
separated from the reaction residue and reused 
in five successive cycles without significant loss of 
catalytic activity.
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