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Water pollution is one of the critical challenges of today’s society. Dyes 
are carcinogenic pollutants that are resistant to degradation and their 
adsorptive removal from water require some adsorbents with higher 
adsorption efficiency. Current research focuses on the adsorptive removal 
of Azure C dye onto a graphene oxide-carboxymethyl cellulose-co-
acrylamide (GO/P(CMC-Co-Am)) nanocomposite synthesized via free 
radical copolymerization process. Batch adsorption study was carried out 
for bitter understanding the effects of dye concentration and temperature 
on adsorption efficiency. Data from concentration study and temperature 
was applied to different isotherm models and thermodynamic study. 
Results revealed that Freundlich isotherm model fits best to adsorption data 
(R² = 0.9219), highlighting the heterogeneous adsorption. Furthermore, 
high temperature results in decreasing the adsorption capacity, revealing 
the exothermic nature of the adsorption process. Thermodynamically, 
the process was spontaneous and exothermic in nature with a decrease 
in entropy over a range of temperature. Overall, results showed the 
effectiveness of GO/P(CMC-Co-Am) nanocomposite for adsorption of 
Azure C dye from water.

INTRODUCTION 
One of the major contributors of pollutants 

discharge into the water system is textile industry 
[1, 2] that generally contains variety of compounds, 
dyes, ions, salts, and other organic and inorganic 
substances. According to an estimation, textile 
industry is responsible for discharge of nearly 
100 tons of dyes in water per annum [3]. The 

excessive release of dyes into water system results 
in environmental pollution thereby affecting all 
life forms of it. Among the variety of pollutants in 
water, dyes are the common pollutants present in 
large amount. One of the most common dyes is 
cationic Azure C dye that was conventionally used 
for dying fabrics such as silk, leather, and paper. 
The solubility of this dye is high in water and its 
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maximum absorbance take place at the wavelength 
(λmax) of 611.5 nm. The chemical formula of dye 
is C13H12ClN3S, and is commonly known as Basic 
Violet 3 [4]. Azure C dye when present in very high 
concentrations in water it resulted in affecting 
both aquatic and terrestrial life [5]. This led to the 
need for treating dye loaded water using some 
effective wastewater treatment technologies 
[6-12]. Nowadays, researchers put their utmost 
efforts in treating polluted water using some 
promising methods that include physical, chemical 
and some biological methods [13-15]. Among all 
previously mentioned techniques, adsorption 
technique is one of the widely employed method 
for water treatment and has been used earlier 
by many researchers [16-18]. The simple design, 
effectiveness, and cost-efficient nature of this 
process make this a promising technique for 
treating water containing variety of pollutants 
[19]. Till yet, variety of adsorbents studied and 
employed for adsorption of dyes from water [20-
30].

Adsorption is a process where in a material 
transition from a liquid phase to a solid 
surface, establishing chemical and/ or physical 
interactions. Various types of sorbents are utilized 
in these processes, contributing to the complex 
phenomenon of retaining metal ions and organic 
ligands in soil [19, 31]. Hydrogels, characterized 
as three-dimensional polymeric networks with 
high porosity, can absorb and retain substantial 
quantities of water when swollen, thereby 
showing great potential as adsorbents for metals 
[32]. The literature review indicates that the FTIR 
technique is employed to analyze the functional 
groups present on hydrogel surfaces. Common 
functional groups identified on biocarbon surfaces 
include C=C, C=O, O–H, C–O, O–CH3, and C–H. 

These functional groups are believed to facilitate 
the adsorption of dyes [33, 34], Sodium alginate 
(SA), chitosan, cellulose, and lignin [35] are 
natural polysaccharides that are generally low-
cost and readily available [36]. Given its excellent 
biocompatibility and biodegradability, sodium 
alginate is considered an ideal bio-adsorbent 
substrate. Research has demonstrated that SA 
can effectively remove toxic heavy dyes, such as 
cationic Azure C dye [37], Graphene oxide (GO) 
is a biocompatible and non-toxic material that 
demonstrates excellent performance even at 
low concentrations [38]. GO contains various 
functional groups, including hydroxyl, carboxyl, 
and epoxy groups, on both its interior and surface, 
allowing it to degrade toxic pollutants through 
mechanisms such as electrostatic interaction, 
chemical reactions, and hydrogen bonding [39]. 
Additionally, GO features a high specific surface 
area and an abundance of surface functional 
groups. This study, therefore, aimed at adsorption 
of Azure C dye using nanocomposite material 
synthesized by free radical copolymerization of 
graphene oxide and carboxymethyl cellulose-co-
acrylamide (GO/P(CMC-Co-Am)). Furthermore, 
the research aimed to understand the 
thermodynamics and isothermal modeling of 
the dye adsorption process, providing valuable 
insights into the factors affecting adsorption.    

MATERIALS AND METHODS
Materials and chemicals used 

The chemicals used in study were sodium 
chloride, potassium chloride, calcium chloride, 
potassium persulfate, bis-acrylamide, acrylamide, 
carboxymethyl cellulose sodium salt, nitrogen gas, 
graphite (5μm), hydrochloric acid, sodium nitrate, 
potassium permanganate, hydrogen peroxide and 
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Fig. 1. Prepared hydrogel P(CMC-Co-Am). 
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barium chloride.  

Synthesis of hydrogel P(CMC-Co-Am)  
The hydrogel i.e., P(CMC-Co-Am) was 

synthesized by the process of free radical 
copolymerization. For this, 0.05 g sodium 
carboxymethyl cellulose (CMC) was dissolved in 
50 mL deionized water. Subsequently, 12 grams of 
acrylamide was gradually added to the solution, 
which was placed in a three-necked round-bottom 
flask equipped with a condenser, a separatory 
funnel, and a nitrogen gas inlet. The mixture 
was stirred until complete dissolution, then 0.18 
grams of N, N’-methylenebisacrylamide (MBA) 
was incorporated, followed by two drops of 
TAMAD and 0.12 grams of potassium persulfate 
(KPS) as the initiator. Each component was added 
sequentially under a nitrogen atmosphere with 
continuous stirring for two hours at 60 degrees 
Celsius. Upon completion, the resulting hydrogel 
was cut into small pieces and washed thoroughly 
with deionized water under constant stirring for 
six hours, replacing the water every 30 minutes 
to remove any unreacted materials. Finally, the 
hydrogel was dried in an oven at 60 degrees 
Celsius until it reached a constant weight (Fig. 1).  

 
Synthesis of GO/P(CMC-Co-Am) nanocomposite

The polymer nanocomposite hydrogel was 
synthesized using free radical copolymerization 
in an aqueous solution. Sodium carboxymethyl 
cellulose (CMC) was dissolved in deionized water, 
followed by the gradual addition of acrylamide. 
The resulting solution was placed in a three-
necked round-bottom flask equipped with a 
condenser, a separatory funnel, and a nitrogen 
gas inlet. After its complete stirring, pre-dissolved 

graphene oxide (GO) added to above mixture with 
the help of separatory funnel. This was followed 
by adding potassium persulfate (KPS, initiator) to 
mixture with constant stirring under nitrogen at 
60°C for 2 hours. The resulting obtained polymer 
nanocomposite hydrogel was then cut into smaller 
pieces that were washed thoroughly with water 
for removing unreacted materials. Afterwards, 
hydrogel was oven-dried at 60°C till a constant 
weight was obtained (Fig. 2). 

 
Characterization of adsorbent  

For the identification of different functional 
groups of adsorbents, Fourier Transform Infrared 
(FTIR) analysis was carried out (Shimadzu 8400s 
spectrophotometer) within range of 500 to 4000 
cm⁻¹ [7, 40, 41]. Additionally, the surface analysis 
of adsorbents was studied with the help of Field 
Emission Scanning Electron Microscopy (FESEM) 
(TESCAN MIRA3) using an accelerating voltage of 
25 kV that provides information regarding surface 
structure and morphology of adsorbents, which 
can influence their adsorption properties [42]. 
X-ray Diffraction (XRD) analysis was also carried 
out (Shimadzu XRD-6000) for analysis of crystal 
structure and crystallinity of adsorbents with 2θ 
range of 10° to 80° [43, 44].  

Adsorption study  
To investigate the influence of dye concentration 

and temperature on the adsorption of Azure C 
dye by the GO/P(CMC-Co-Am) nanocomposite, 
batch adsorption experiments were conducted 
under controlled conditions. Temperature was 
varied between 10°C and 30°C while maintaining 
constant initial dye concentrations (10-100 ppm), 
contact time (120 minutes), shaking speed (130 
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Fig. 2. Prepared GO/P(CMC-Co-Am) 

nanocomposite. 
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rpm), pH (7.0), and adsorbent dose (0.1 g). The 
adsorption efficiency was evaluated at different 
temperatures to assess the impact of temperature 
on the adsorption process in terms of adsorption 
capacity that was calculated by using Eq. 1: 

qe =
C0 − Ce
M × V                                                     (1)

here C0 and Ce refers to initial and equilibrium 
dye concentrations (mg/l), V and M refers to 
volume (mL) of solution and adsorbent weight (g) 
used, correspondingly. 

The experimental data were analyzed using 
various isotherm models (e.g., Langmuir, 
Freundlich and Temkin) to elucidate the adsorption 
mechanism. The Langmuir model assumes 
monolayer adsorption on adsorbent surface [7] 
while Freundlich model deals with multilayer 
adsorption [16]. Temkin model concerned with 
adsorbent-adsorbate interactions and heat of 
adsorption variation [45]. Linear equations used 
for Langmuir, Freundlich and Temkin model are 
given in Eqs. 2, 3 and 4 respectively. 

1
qe

 =  1
qmax

+ 1
qobCe

                                        (2)

where b (L/mg) and qmax (mg/g) denotes 
Langmuir constant and maximum adsorption 
capacity correspondingly. 

1
qe

 =  1
qmax

+ 1
qobCe

                                            (3)

where kf and n refers to Freundlich constant 
(mg/g) and exponent, correspondingly [56]. 

qeq  = BlnAT + BlnCeq                                          (4)

here, R is universal gas constant (J/mol K), B 
is constant associated with adsorption heat (J/
mol), AT, bT and T represents constant of Temkin 
equilibrium binding (L/ g), Temkin constant (J/ 
mol) and absolute temperature (K) respectively 
[45]. 

Additionally, to investigate the adsorption 
mechanism and thermodynamics of the process, 
thermodynamic parameters (ΔH, ΔS, and ΔG) were 
calculated. The distribution coefficient (Kc) was 
used to determine ΔG. The slope and intercept of 
a plot of ln(Kc) versus 1/T were used to calculate 
ΔH and ΔS. These parameters provide insights 
into the spontaneity, feasibility, and nature of the 
adsorption process. For calculation of ∆G (Eq. 5), 

3

 

  
Fig. 3. FTIR of prepared GO/P(CMC-Co-Am) nanocomposite both before and after Azure C dye 

adsorption. 
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value of distribution coefficient, kc, was used (Eq. 
6): 

∆G = −RT ln kc                                                       (5)

kc =
Cad
Ce

                                                                    (6)

where Cad (mg/L), R and T is adsorbed dye 
concentration, gas constant (8.314 J/mol K) and 
absolute temperature (K), respectively. The Gibbs 
free energy change (ΔG) can be calculated using 
the Eq. 7:

∆G = ∆H − T∆S                                                        (7)

 Substituting Eq. 5 into Eq. 7, an equation of lnkc 
can be obtained as shown in Eq. 8:

ln kc = −∆H
RT +

∆S
R                                                   (8)

By plotting a graph of ln(Kc) versus 1/T, the 
enthalpy change (ΔH) and entropy change (ΔS) 
can be determined from the slope and intercept, 
respectively. 

RESULTS AND DISCUSSION 
FTIR study  

The FTIR spectrum of the GO/P(CMC-Co-Am) 
nanocomposite before adsorption (Fig. 3, black line) 
exhibits several prominent peaks associated with 
functional groups. A broad peak at approximately 
3400 cm⁻¹ indicates the presence of hydroxyl (-OH) 
stretching, likely originating from carboxyl and 
hydroxyl groups on graphene oxide (GO) and the 
polymeric components (CMC and P(CMC-Co-Am)). 
The peak near 1700 cm⁻¹ corresponds to carbonyl 
(C=O) stretching, possibly from carboxyl groups on 
GO or amide functionalities in the nanocomposite. 
Additionally, a peak around 1600 cm⁻¹ is attributed 
to C=C stretching from the aromatic rings of 
graphene oxide. In the lower wavenumber region 
(1000-1500 cm⁻¹), peaks arise due to C-O and C-N 
stretching, as well as other vibrational modes 
characteristic of the polymer backbone and 
oxygenated groups within the nanocomposite. 
Following the adsorption of Azure C dye (Fig. 
3, red line), the FTIR spectrum reveals several 
notable changes. The intensity of the 3400 cm⁻¹ 
peak associated with hydroxyl (-OH) stretching 
decreases, suggesting the involvement of these 

4

 

  
Fig. 4. XRD of prepared GO/P(CMC-Co-Am) nanocomposite.
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groups in interactions with the dye, possibly 
through hydrogen bonding. The peak near 1700 
cm⁻¹ for carbonyl (C=O) stretching also exhibits 
slight shifts, indicating potential interactions with 
dye molecules, potentially via electron interactions 
or hydrogen bonding. The 1600 cm⁻¹ peak for C=C 
stretching shows minor changes, suggesting π-π 
stacking interactions between the aromatic rings 
of the dye and graphene oxide. In the fingerprint 
region (1000-1500 cm⁻¹), several peaks undergo 
changes in intensity or shift slightly, indicating 
the participation of various functional groups, 
such as C-O and C-N, in the adsorption process, 
reflecting the complex interactions between the 
dye molecules and the nanocomposite surface [4, 
46-51]. 

 
XRD study 
The XRD pattern of the GO/P(CMC-Co-Am) 
nanocomposite (Fig. 4) exhibits a broad peak 

centered around 2θ of 20-30°, indicative of an 
amorphous or semi-crystalline structure. This 
broad peak suggests the presence of disordered 
graphene oxide (GO) sheets, possibly due to 
exfoliation or interactions with the polymer matrix, 
which disrupt the regular stacking of GO layers. The 
lack of sharp peaks at higher angles confirms the 
limited crystallinity of the nanocomposite, with 
the polymer contributing to its overall amorphous 
nature. This pattern indicates the successful 
integration of GO into the polymer matrix [52]. 

 
FESEM study 

The FESEM images of the prepared GO/P(CMC-
Co-Am) nanocomposite before dye adsorption 
(Fig. 5a) exhibit a rough and porous surface 
morphology, which is favorable for adsorption 
applications. Images captured at various 
magnifications reveal clusters of irregularly shaped 
particles in the nanometer range (approximately 
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Fig. 5. FESEM of prepared GO/P(CMC-Co-Am) nanocomposite both (a) before and (b) after Azure C dye adsorption.
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59.59 nm). The porous structure, characterized by 
noticeable agglomerates, suggests a high surface 
area, which is advantageous for facilitating dye 
adsorption. The nanoscale features and porosity 
observed indicate that the nanocomposite 
possesses a well-developed surface, suitable for 
effective interaction with dye molecules during 
the adsorption process [53]. The FESEM images 
of the GO/P(CMC-Co-Am) nanocomposite after 
adsorption (Fig. 5b) reveal significant changes 
in surface morphology compared to the raw 
nanocomposite. The previously observed rough 

and porous surface appears partially covered or 
filled, suggesting that dye adsorption has occurred 
both on the surface and within the pores of the 
nanocomposite. The post-adsorption images 
exhibit a more compact structure with reduced 
pore visibility, indicating that dye molecules have 
occupied the available surface area, leading to 
decreased porosity (approximately 27.87 nm), 
possibly indicating aggregation of dye molecules or 
changes in particle dimensions due to adsorption. 
Overall, results confirm successful adsorption, 
characterized by clear surface modifications 
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Table 1. Effect of dye concentration on Azure C dye removal at variable temperatures.  

Fig. 6. Adsorption of Azure C dye onto prepared GO/P(CMC-Co-Am) nanocomposite at 
variable temperatures. 
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Fig. 7. Plot of (a) Langmuir, (b) Freundlich and (c) Temkin isotherm model for 
adsorption of Azure C dye onto prepared GO/P(CMC-Co-Am) nanocomposite.  
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and filling of the porous structure following dye 
interaction [11]. 	  

	
Isothermal and thermodynamic study 

The adsorption of Azur C dye at varying 
temperatures (10°C, 15°C, 20°C, and 30°C), Fig. 6 
and Table 1, shows that the adsorption capacity 
(Qₑ) decreases as the temperature increases. At 
10°C, the highest adsorption capacity is observed, 
with Qₑ reaching approximately 8.6 mg/g as the 
equilibrium concentration (Cₑ) increases, while 
at 30°C, the adsorption capacity is the lowest, 
reaching around 8.2 mg/g. This trend suggests 

that the adsorption of Azur C dye onto the GO/
P(CMC-Co-Am) nanocomposite is an exothermic 
process, where lower temperatures favor higher 
adsorption. The decrease in adsorption capacity 
with increasing temperature may be due to reduced 
attractive forces between the dye molecules and 
the adsorbent surface at higher temperatures, 
or due to the increased kinetic energy of the dye 
molecules, leading to desorption [54]. 

The adsorption of Azur C dye onto the GO/
P(CMC-Co-Am) nanocomposite was evaluated 
using the Langmuir isotherm model (Fig. 7a). The 
linear plot between 1/Qₑ (inverse of adsorption 

2

Langmuir Freundlich Temkin
q0 (mg/ g) Kf (mg g-1 (mg L-1)-1/n) B (J/mol)

20.96 7.377 -2.4766
b (L/g) n AT (L/g)
0.0956 0.503 0.0883

R2

0.8461 0.936 0.9035
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Fig. 8. Effect of temperature for adsorption of Azure C dye onto prepared 
GO/P(CMC-Co-Am) nanocomposite.

Table 2. Parameters calculated from Langmuir, Freundlich and Temkin isotherm 
model. 

Table 3. Effect of temperature for adsorption of Azure C 
dye onto prepared GO/P(CMC-Co-Am) nanocomposite in 
terms of equilibrium adsorption capacity (qe (mg/g)). 



854

A. Mhammed et al. / Investigationof Azur C Dye Adsorption on GO/P(CMC-Co-Am) Nanocomposite

J Nanostruct 14(3): 845-856, Summer 2024

capacity) and 1/Cₑ (inverse of equilibrium 
concentration) with an R² value of 0.8461 suggests 
that the Langmuir model reasonably describes the 
adsorption data. The slope and intercept of the plot 
indicate monolayer adsorption on a homogeneous 
surface with a finite number of adsorption sites. 
The Freundlich model, as illustrated in Fig. 7b, 
shows a positive correlation between the amount 
of dye adsorbed and its concentration, suggesting 
heterogeneous adsorption. The R² value (0.9219) 
confirms its suitability for describing this process. In 
contrast, the Langmuir model assumes monolayer 
adsorption with a saturation point. Additionally, 
the Freundlich model, while exhibiting a strong 
correlation with the adsorption data, may also 
incorporate some aspects of the Temkin model 
(with an R² value of 0.9989 as outlined in Fig. 7c), 
suggesting that both heterogeneous adsorption 
and molecular interactions are involved in 
the adsorption process of Azure C dye. The 
comparative analysis of all investigated isotherm 
models is summarized in Table 2, emphasizing 
the superior fit of the Freundlich model with a 
maximum adsorption capacity (qe) of 7.37 mg/g 
[54]. 

The effect of temperature presented in 
Table 3 and Fig. 8 illustrate a slight decrease 
in adsorption with increasing temperature, 

suggesting an exothermic process. This indicates 
that the adsorption process releases heat, which 
is consistent with the formation of weaker physical 
bonds or the breaking of chemical bonds between 
the adsorbate and the adsorbent at higher 
temperatures. This phenomenon is often observed 
in physical adsorption, where the interactions 
between the adsorbate and adsorbent are based 
on weak intermolecular forces, such as van der 
Waals forces or dipole-dipole interactions [54].  

The thermodynamic data reveals that the 
adsorption process of Azure C dye is exothermic, 
meaning it releases heat, and spontaneous at 
20°C, indicating that it occurs without external 
energy input (Table 4). Additionally, the process 
leads to a decrease in entropy, suggesting that 
the system becomes more ordered as the dye 
molecules bind to the adsorbent surface. The high 
R² value of 0.9279 in the Arrhenius plot (Fig. 9) 
confirms the suitability of the Arrhenius equation 
in describing the temperature dependence of the 
adsorption process. This equation relates the rate 
constant of the process to its activation energy 
and temperature [55]. 

 
CONCLUSION 

The GO/P(CMC-Co-Am) nanocomposite 
effectively adsorbed Azure C dye from aqueous 

4

T (°C) ΔG (kJ/mol) ΔH (kJ/mol) ΔS (J/mol K) Kc

20 1.577 -11.186 -43.496 0.523

9
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Table 4. Calculated thermodynamic parameters from Van’t Hoff plot. 
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solutions. Adsorption capacity was temperature-
dependent, with optimal performance at 
lower temperatures, confirming an exothermic 
process. The Freundlich isotherm best described 
the adsorption data, suggesting a complex 
interaction. Thermodynamic parameters indicated 
a spontaneous and feasible process at room 
temperature, leading to a more organized system. 
This research highlights the potential of the GO/
P(CMC-Co-Am) nanocomposite as a sustainable 
and efficient solution for wastewater dye removal, 
warranting further investigation of its long-term 
stability and reusability. 
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