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Titanium dioxide/Graphene composite films were prepared utilizing two 
steps (Hydrothermal and spin coating) methods FTO glass substrates for 
(1, 2, 3, and 4) layers, with sequential thermal treatment. The produced 
films were characterized using X-ray diffraction, where the dominant phase 
was (011) with a crystalline size of 38.6 nm for (1, 2, and 3) layers. While 
for 4 layers was (004) with 36.92 nm. In general, the increasing of layers 
and the heating treatments affected the crystalline size of that deposited on 
FTO glass, where swing between the two values (27 and 36) nm, without 
the appearance of any peaks of graphene. In addition, the morphological 
properties were determined by transmission electron microscopy. The 
scanning electron microscopy images of the prepared films showed the 
dependence of both partial size and porosity on the number of layers. 
Despite reducing the gap energy of the 1layer film compared to TiO2 gap 
energy. However, the energy gap of the (2, 3, and 4) layer films increased 
to about 3 eV, where the increase in layers number over one layer and the 
thermal treatment did not affect a noticeable change in the gap energy.

INTRODUCTION
Titanium dioxide (TiO2) is one of the transition 

metal oxides, which has perfect optical properties 
in the ultraviolet (about 3.7 eV) [1], however, 
the key challenge that most significant challenge 
that creates limitations in optical applications is 
the fast recombination of the photogenerated 
e-h. Thus, the researchers proposed several 
mechanisms; (i) the transition metal doping 
such as Ni, Co, Fe, Mo, Nb, and Ru [2]. Ions of 
these metals may create active traps leading to 
increasing the recombination that will be affecting 
the photocatalytic efficiency. (ii) Noble metallic 
nanoparticles such as gold, copper, and silver [3], 

in this case, the photogenerated electrons are 
likely to be attracted to particle surfaces which 
makes recombination so fast. (iii)  The mechanism 
with the best results was to provide a transition 
surface for the excited electrons. Graphene was 
the most potential candidate [4]. 

Graphene has unique physical properties; high 
thermal conductivity [5] ، high charge carrier 
mobility [6,7] and optical transmittance of almost 
97% [5] with about 0.1% of reflectivity [6][8]. In 
general, for TiO2/ Graphene (TiO2/ G) composite, 
the transition of excited electrons depends on the 
presence of UV or visible light and oxygen findings 
that are reduced by graphene as explained in Fig. 
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1 [9] [10][11].
In the recent decade, TiO2/ G composite was 

prepared via several methods for photocatalytic 
degradation, photocatalytic, gas sensing, and self-
cleaning applications, as explained in Table 1.

In this work, we present a discussion of the 
characteristics of TiO2/ G composite films that 
were   Prepared via the spin coating method. 

MATERIAL AND METHODS
Materials

The spherical TiO2 nanoparticles (Anatase) 
(TiO2, 99.5%, 10-30 nm) and ethanol (99.9%) 

were supplied by Sigma Aldrich. Whereas, the 
nanosheets graphene (G, 15 micros) with a 
platelet morphology were obtained from (sky 
spring Nanomaterials).

Synthesis of TGr composite films
Synthesis of TiO2/ G composite, a mixture 

of 0.02g of graphene, 1g of TiO2, and 4 ml of 
ethanol (99.9%) was sonicated for 20 min at room 
temperature. Then, the produced solution was 
pleased into an autoclave with adding of 50 mL 
of distilled water (DW). So, the reaction has been 
achieved under 160 °C for 72 h, then gradually cool 

–

Fig. 1. Scheme to illustrate the mechanism of electron transfer in TiO2/ G composite [9]

Table 1. TiO2/ G composite preparation and applications

Table 2. the thermal steps protocol.
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down to room temperature, filtered, and washed 
with DW and ethanol several times directly. 
Then, dried overnight at 40 °C. TiO2/ G composite 
powder (0.5g) was added to 30ml ethanol on 
a magnetic stirrer until complete dissolution. 
TiO2/ G composite films were synthesized by spin 
coating with 2650 rpm of speed for 10 minutes, 
1000 rpm/min of acceleration, and adding 500 
μL of TiO2/ G composite solution (drop by drop). 
Then the synthesized films were treated thermally 
employing the thermal steps protocol for every 
four layers. Then, were leavened to cool gradually 
to room temperature throughout the night-down. 
Table 2 represents the thermal steps protocol.

Characterizations
TiO2/ G composite films have been characterized 

structurally by utilizing an X-ray diffractometer 
(XRD) with 4 degrees per minute of scan speed, Cu 
Kα1 radiation (λ=1.54060 Å), 30 kV, and 10 mA), 
and morphologically via studying transmission 
electron microscopy (TEM) and scanning electron 
microscopy SEM images. In addition, utilizing 
UV–Vis spectroscopy to determine the optical 
properties.

RESULTS AND DISCUSSION
X-ray Diffraction

Fig. 2 illustrates the XRD patterns of the prepared 
films on substrates of glass (one layer) and FTO glass 
(1, 2, 3, and 4) layers. However, the deposited films 
on the glass substrate showed a polycrystalline 
structure of nanocrystalline, anatase (TiO2) with 
a dominant phase at 2θ=25.23(011) according to 
ICDS 98-009-2363 cared [23] and crystalline size of 
38.6 nm. In the same position, the dominant peaks 
emerged with a blue shift with (Δ2θ ≈1.3o) of 
average in all (1, 2, and 3) layers and appearing of 
SnO2 at 2θ ≈33.893o and 61.872o with (310) (101) 
respectively according to ICDD 00-041-1445 card 
that points out to FTO. While for four layers on FTO 
glass, the dominant phase emerged at 2θ = 37.89o 
(004) with 36.92 nm of crystalline size.  In general, 
the increasing of layers and the heating treatment 
affected the crystalline size of that deposited on 
FTO glass, where swing between the two values 
(27 and 36) nm. We believe that the annealing is 
responsible for the displacement of the TiO2 peaks 
as a result of the acquisition of high kinetic energy 
by both graphene and titanium oxide particles, 
which primarily led to the oxidation of graphene.  
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Fig. 2. The XRD patterns of the prepared films on substrates of glass (one layer) and FTO glass (1, 2, 3, and 
4) layers
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TEM and SEM images
TEM image of the stripped-off particles of 

the deposited film on the glass substrate shows 
the spherical clusters with 89.15±37 nm of the 
average size of clusters that consist of spherical 
particles with 20.8±6.5 nm of the average size of 
particles (Fig. 3a and b). The selected area electron 
diffraction (SAED) confirmed the crystallization 
indicated by XRD analysis in Fig. 2 as shown in Fig. 

3c. For the deposited film on the glass substrate, 
the SEM image (Fig. 4) showed both shapes and 
types of particles formed, which it is composed 
of polygonal particles with (78.00±60.62) nm in a 
dark appearance. Conversely, the bright particles 
consist of needle shapes and big particles that are 
believed to be graphene particles.

Fig. 5 illustrates the surfaces of the deposited 
films of (1, 2, 3, and 4) layers on FTO glass substrates. 

Fig. 4. SEM image of the deposited film on the glass substrate

Fig. 3. (a) TEM image of the stripped-off particles of the deposited film on the glass substrate, (b) the size distribution 
diagram, and (c) SAED.
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It is clear that there is a difference between the 
surfaces of the films according to the number of 
layers that attributes to two causes; change in the 
roughness of the surface with the accumulation of 
layers, adding to the heat treatment sequence. In 
addition, it is noticeable that the number of layers 
affects the values of all the average particle size, 
shape, and porosity, where the average particle 
size increases depending on the number of layers 
(19±17.9, 20.55±20.8, 50.3±23.6, 63.21±28.1) 
nm. Nevertheless, the surface porosity fluctuated 
(62.78, 73.43, 48.44, 66.75) % respectively. It is 
worth noting also, it was observed in Fig. 5 (a and 
b), that there are cracks believed to be due to the 
difference in the tension coefficients between the 

coated TiO2/ G composite layer and the substrate.
The thickness was determined using the 

cross-section images of the deposited films. 
Where increase with the increasing number of 
layers (7.53±1.86, 14.38±1.89, 314.62±31.53, 
702.78±43.48) nm for (1, 2, 3, and 4) layers, as 
shown in Fig. 6.

Optical properties
Fig. 7 shows the transmittance of the prepared 

films one layer (1L), two layers (2L), three layers 
(3L), and four layers (4L) respectively for (300 
to 1000) nm. It is evident that the absorption 
coefficient (α) is greater than 104 cm-1 (as shown 
in the mini figure in Fig. 7), according to equation 

Fig. 5. the surfaces of the deposited films of (1, 2, 3, and 4) layers on FTO glass substrates.
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(1), which refers to having a direct optical gap [24]. 

α = 2 ∙ 303Ad                                                             (1)

where (A) is the absorbance and (d) is the 
thickness of the film. Due to the relative height 

optical bandgap (Eg), was calculated according to 
equation (2)[25].

(αhv)2 = B(hv − Eg)                                              (2)

Accordingly, that resulted to have a height 
transmittance. In general, the transmittance 
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behavior was enhanced with the increase of the 
layers number increasing, which increased from 
2.21% at 375 nm of wavelength for 1L to (27.9, 
24.15, and 20.75) % for 2L, 3L, and 4L respectively. 
While it increased from 6.57% for 1L at 550 nm 
of wavelength to (55 – 62.5) % as for 3L and 2L 
respectively. 

There is a noticeable change in the energy gap 
value between it in 1L and other layers. As well, 
increasing in the layers and the thermal treatment 
did not noticeable effect on the energy gap despite 
the obvious fluctuation in porosity values, where, 
they were (2.38, 3.01, 2.99, and 3.06) eV for 1L, 2L, 
3L, and 4L respectively as shown in Fig. 8. 

 
CONCLUSION

TiO2/graphene films were successfully prepared 
by utilizing a combination of both hydrothermal 
and spin coating methods, with thermal treatment 
for several layers. Both increases in layer number 
and the thermal treatment enhanced the 
prepared films’ optical properties, which could 
qualify these films as effective layers in solar cells 
and photovoltaic applications. 
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