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Abstract 
Surface and small scale effects on free transverse vibration of a sin-
gle-walled carbon nanotube (SWCNT) fitted with Y-junction at 
downstream end conveying viscose fluid is investigated in this article 
based on Euler-Bernoulli beam (EBB) model. Nonlocal elasticity 
theory is employed to consider small scale effects due to its simplicity 
and efficiency. The energy method and Hamilton’s principle are used 
to establish the corresponding motion equation. To discretize and 
solve the governing equation of motion the Galerkin method is ap-
plied. Moreover, the small-size effect, angle of Y-junction, surface 
layer and Pasternak elastic foundation are studied in detail. Regarding 
fluid flow effects, it has been concluded that the fluid flow is an effec-
tive factor on increasing the instability of Y-SWCNT. Results show 
that increasing the angle of Y-junction enhances the flutter fluid ve-
locity where the first and second modes are merged. This work could 
be used in medical application and design of nano-electromechanical 
devices such as measuring the density of blood flowing through such 
nanotubes. 
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1. Introduction 

After the discovery of carbon nanotubes (CNTs) by 
Iijima [1] many experimental and theoretical investi-
gations of CNT-based multi terminal structures, name-
ly, junctions of L, X, Y, and T-types, have been car-
ried out [2-4]. It has been shown that  such structures 
can be used as nanotrans istors  and nanodiodes. Y 

 
 

junctions were fabricated with a stem exceeding the 
branches in diameter and with an acute angle between 
them. A Y-shaped single-wall carbon nanotube(Y-
SWCNTs) is a novel structure consisting of three ter-
minals with different chirality [5]. Y-SWCNTs have a 
potential to realize the nanoscale three-terminal devic-
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es where the third terminal could be used for control-
ling the switching, power gain, or other applications 
[6, 7]. Results showed that the junctions have high 
thermal stability and mechanical strength which made 
CNT junctions as one of the most important devices to 
improve the future of nanoscale structures [8]. There-
fore In recent years the syntheses of CNTs and carbon 
nanorods (CNRs) with Y or T branched junctions have 
become a focus in carbon material research because of 
their potential ability to bring novel mechanical, elec-
trical, thermal properties to nanodevices [9]. Future 
investigations should correlate the detailed physical 
structure of the nanostructure, especially the study of 
Y-junctions which is still in its infancy. 

In this study, the nonlocal elasticity theory is used 
which was first introduced and developed by [10-12] 
to consider small scale effect in the continuum model 
of nanostructures. In recent years, studies about the 
vibration of nanostructures using the nonlocal theory 
of elasticity are increased due to superior vibration 
characteristics of them. Based on the partial nonlocal 
elasticity theory, Ghorbanpour Arani et al. [13, 14] 
investigated the free transverse vibrations of SWCNT 
and double-walled carbon nano-tube (DWCNT) under 
axial load using the Euler-Bernoulli beam (EBB), Ti-
moshenko beam (TB) and Donnell shell models. An 
elastic rod model was developed by Chang, [15] to 
study the small scale effect on axial vibration of non-
uniform and non-homogeneous nanorods by using the 
theory of nonlocal elasticity. 

Since nanotubes conveying fluid can be used in 
wide range of modern engineering structures; recently, 
a large amount of research works have been carried 
out on the buckling and vibration of the nanotubes 
conveying fluid. Among these studies, beam and shell 
models are commonly utilized to consider the effects 
of fluid flow on the nanotubes. Kuang et al. [16] ana-
lyzed nonlinear vibrations of DWCNTs conveying 
fluid. They considered both uncoupling and coupling 
between the longitudinal and transverse displacements. 
Vibration and instability analysis of CNTs conveying 

fluid was investigated by Ghavanloo et al. [17]. They 
reported that the effect of internal moving fluid is cha-
racterized by two parameters, the steady flow velocity 
and the mass density of the fluid. In some recent litera-
tures the internal fluid flow is assumed to be viscous. 

Since at nanoscale problems surface-to-bulk energy 
ratio increases, surface effects must be taken into ac-
count, while it can be disregarded in macroscopic 
structural problems. The effects of surface residual 
stresses on nano-beams were studied by Bar On and 
Altus [18]. The nonlinear equations were separated 
into two complementary parts; static, which includes 
the surface residual moments and yields a residual def-
lection, and dynamic, for the beam vibrations asso-
ciated with the residual deflection via geometrical 
nonlinearity. Lee and Chang [19] investigated surface 
and small-scale effects on vibration analysis of a non-
uniform nano-cantilever beam. They found that the 
surface effects with positive surface constants tend to 
increase the critical axial force and the natural fre-
quency and shear deformation tends to decrease the 
critical axial compression force and the natural fre-
quency. 

2. Formulation 

Fig. 1 illustrates a schematic diagram of a Y-
SWCNT conveying fluid with inner radius iR , outer 

radius oR , thickness h , length L and the angle of Y-

junction   embedded in a Pasternak elastic medium 

with considering surface layer at outer surface of CNT 
that covered with crystal of nickel. 

 
Fig. 1. Configuration of embedded Y-SWCNT conveying 

fluid 
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2.1. Surface Effect 

For appropriate modeling of the Y-SWCNT an ad-
ditional bonded thin surface layer (outer layer) is en-
compassed the Y-SWCNT. Since at nanoscale prob-
lems the ratio of surface-to-volume becomes signifi-
cant, the effects of surface layer cannot be ignored. 
Materials properties often used in surface science are 
surface stress and surface energy. The reversible work 
per unit area needed to elastically enlarge a pre-
existing surface called surface stress. Gurtin and Mur-
doch [20] presented a mathematical frame work to 
study the mechanical behavior of material surfaces. 
The other material property is surface energy which is 
defined as the reversible work per unit area concerned 
in forming a surface. For the surface of elastic material 
the following basic relation can be written as: 

  



   




  


, , 1,2 ,  (1) 

where   is the surface stress tensor,  is surface 

residual energy in the absence of external loading and 
surface deformation and   denotes the induced sur-
face energy. Applying the Hook’s law in the Eq. (1) 
yields the following stress-displacement relation as 
[20]: 

             2 , , 1,2,3 ,s s
ij i j  (2) 

in which  s  and  s  are the Lame constants of surface 

material, and   denotes the surface residual stress. 
The generalized Young-Laplace equation can be ex-
pressed in the cases with zero thickness as follows: 

    ,ij i jn n  (3) 

where ij  is the stress jump across each external in-

terface surface, in  is the unit normal vector and   

is the curvature tensor. 
It is assumed that the thickness of the surface layer 

sh  is much smaller than the thickness h  and inner ra-
dius iR  of Y-SWCNT and also, the thickness of the 

thin surface layer approaches zero; hence, the Laplace-

Young equations (Wang [21]) can be used to express 
the surface residual stress as: 

 





2

0 24 ,xz o
wR

x
 (4) 

in which 0  is the residual surface tension. Also, the 

work done by the resulting distributed transverse load-
ing induced by surface effects can be written as fol-
low: 







2

0 0 20

1 4 .
2

L

s
wq R wdx

x
 (5) 

Considering the additional flexural rigidity due to 
outer surface layer and using the composite beam the-
ory [21] yields the effective flexural rigidity as: 

   3( ) ,s s
t t oEI EI E h R  (6) 

where sE  is the Young’s modulus of surface layer. 

2.2. Foundation Effect 

The effects of the Pasternak surrounding elastic me-
dium on the Y-SWCNT with a Y-junction fitted at the 
downstream are considered as follows: 

    2
0

1 ( ) ,
2

L
e wq k w G w wdx  (7) 

in which wk and G  are the spring constant of the 

Winkler type, the shear constant of the Pasternak type, 
respectively. 

2.3. Strain and Kinetic Energies 

Total potential energy V  and total kinetic energy T  
of Y-SWCNT associated with the vibration of CNT, 
fluid flow at CNT and fluid flow at the downstream Y-
junction defined as: 

    0

1 ,
2 t

L
xx xx tA

V dxdA  (8) 

            2 2 2
0

1 ] ,
2

L
t e t f f fe feT m m x L v m v m v x L dx  (9) 

Here tm , fm , em , fem , tv , fv , fev and   are the 

mass per unit length of SWCNT, the mass per unit 
length of fluid, the mass of downstream elbows mod-
eled as point mass, the mass of the downstream flow 
fluid at the elbows modeled as point mass, perturba-
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tion velocity of SWCNT, velocity of fluid, velocity of 
downstream flow fluid at the elbows and delta Dirac 
function, respectively. 
2.4. Viscosity and Y-junction Effect 

The well-known Navier-Stokes equation can be 
used to consider the effect of viscosity of fluid flow as 
[22]: 

    2 ,f
f f

dv
p v

dt
 (10) 

in which p  is pressure and   is the viscosity of the 

fluid. The viscosity effect derived from Eq. (10) as 
follow: 

 




2

20

1 .
2

L f
f

v
q A dx

x
 (11) 

Also the work done by fluid flow at the Y-junction 
due to the momentum equation for incoming and out 
coming of fluid at Y-junction can be written as: 

  
 


2

2
20

1 1 cos .
2

L
Yj f f

wq m v wdx
x

 (12) 

 
2.5. Motion equation 
To derive the motion equation of embedded Y-
SWCNT conveying viscose fluid, the Hamilton’s prin-
ciple is employed, as follow: 

0
( ) 0.

t
s e Y jV T q q q q dt      

 
(13) 

Substituting Eq. (5), (7-9) and (11-12) into Eq. (13) 
and setting the coefficients of w  to zero, yields the 
following differential equation of motion as: 
 

 

  

  

 


      


  
   

   
 

    
   

     


2
2 2 2

2

2 3 3

0 2 3 2

2 4

2 2

2

2

( cos (1 cos )

4 )

2 ( ( )) ( )

( ( ) ( )) 0

x
w f f f f

o f f

f f fe t t f f

t f fe e

M k w G w m v m v
x

w w wR A v A
x x x t

w wv m m x L I I
x t x t

wm m m x L m x L
t

 
(14) 

 

 

 

2.6. Nonlocal Beam Model 

 
The constitutive equations of the partial nonlocal elas-
ticity can be written as: 
 

2 2
01 ( ) ,nl le a        (15) 

where 0e a  is the small scale parameter,  nl is the 

nonlocal stress tensor and  l  denotes the classical 
stress, respectively. 

Also base on nonlocal elasticity the moment resul-
tant xM  can be expressed as: 

   
  

 

2 22
0 2 2( ) .x

x t
M wM e a EI
x x

 (16) 

Substituting Eq. (16) into Eq. (14) and introduce the 
following non-dimensional parameters, the equation of 
motion for transverse vibration is derived: 

 

   


 


  

  
  

    


   



  




   

 

4

2

2 3

2

0 0
2 2 2

0

, , , , ,

m
, , , ,

, , ,
m

4 2
, , , .

t w
w

f t t t

s s
f ft o

f f
t t f t t

fe fe e f
f fe

f t t ff f t

s s
t t f f

n
tf t i

EI K Lx w t G
x w t G K

L L m m A E EIL

mA L E h R
v v L h

I EI m m EI

m m m A

L m m EIL m m m

I I e a R E h
e

L A EL m m E R R

 

(17) 

 
Substituting Eq. (16) into Eq. (14) and using dimen-

sionless parameters mentioned in Eq. (17) the motion 
equation for transverse vibration can be derived as: 
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 

 

  

 
 
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   
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t x

w wx v
t x
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x  

(18)  

2.7. Solution Method 

In this section the Galerkin method is used to solve 
the equation of motion since it gives better perception 
to study the vibration and instability of fluid convey-
ing pipes than other numerical methods. To discretize 
the obtained partial differential equation of motion let: 

   



1

( , ) ,
N

i i
i

w x t x T t  (19)  

in which  iT t  is the dynamic response and  i x  is 

the orthogonal function which can be defined for C-F 
boundary condition as: 

   

   

  

 
 

 

  


  

( ) sin sinh
sinh sin

cosh cos ,
cosh cos

i i i

i i
i i

i i

x x x

x x
 (20) 

in which i  is the dimensionless fundamental fre-

quency. 
Consequently, substituting Eqs. (19-20) into Eq. 

(18) and multiplying the obtained relation by  j  and 

integrating over the length of the nanotube yields 

      
  



2

2 0,i i
i

T T
M C K T

tt
 (21) 

where   K ,   C  and   M  are the linear stiffness ma-

trix, damping matrix, mass matrix, respectively. 
 
3. Numerical Results and Discussions 
In this paper, the free-vibration equation of the fluid-
conveying Y-SWCNT has been derived by using 
nonlocal elasticity theory. The effects of angle of Y- 
junction, fluid flow, surface tension, nonlocal parame-
ter, Pasternak foundation, are considered. The material 
properties are: The inner radius 3.4iR nm , the thick-

ness  0.34h nm , Young’s modulus 1E TPa , viscosity 
   4

0 3 10 .Pa s , small scale parameter 0 1e a nm , 

  0.01f  and   0.02fe . 

Fig. 2 demonstrates the influence of the angle of Y-
junction angle on the dimensionless flutter velocity 
where the first and second modes are merged for both 
C-C and C-F Y-SWCNTs. As can be seen from Fig. 2 
increasing the angle of Y-junction enhances the di-
mensionless flutter velocity at lower natural frequency 
(first mode) for both C-C and C-F boundary condi-
tions. Hence, the stability of the system increases by 
using Y-junction at the downstream end of nanotube. 
Moreover, combination of first and second modes do 
not occur at near   38  for C-F Y-SWCNTs, while 

for C-C Y-SWCNTs first and second modes are 
merged until about   84 . Also it is evident that at a 

given angle of Y-junction the flutter velocity of the C-
F Y-SWCNT is higher than C-C one. In order to show 
the influences of effective flexural rigidity and resid-
ual surface stresses on the natural frequency of the 
system, variation of dimensionless natural and damp-
ing frequencies with respect to dimensionless fluid 
velocity are presented in Figs. 3a and 3b, respectively 
for C-F Y-SWCNT. As can be seen from Figs. 3 
within the zero-frequency area  d rU U U  the damp-

ing frequency is increased. It is worth mentioning that 
surface effects depend on the surface crystal orienta-
tion and material type. The obtained results from at-
omistic calculations show that  35.3s sE h N m  and 
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  0.31N m  for  1 1 2  nickel while for  0 0 1  nickel 

 43.8s sE h N m  and  0.71N m . Also results show 

that C-F Y-SWCNTs covered by  1 1 2  nickel are 

more stable than those covered by  0 0 1  nickel. 
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Fig. 2. Effect of the angle of Y-junction on the 

dimensionless flutter velocity 
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Fig. 3a. Surface effects on the dimensionless natural 

frequency of C-F Y-SWCNTs 
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Fig. 3b. Surface effects on the dimensionless damping 

frequency of C-F Y-SWCNTs 

Influences of elastic medium on the dimensionless 
natural frequency of the Y-SWCNT are demonstrated 
in Fig. 4 for C-F boundary condition. From Fig. 4 it is 
observed that before the system becomes unstable at 

dU , considering elastic medium enhances stability and 

critical fluid velocity. It is also seen that Pasternak 
foundation more effective than Winkler foundation. 
This is due to the fact that Winkler foundation de-
scribes only the effects of the normal stress of the elas-
tic medium while Pasternak foundation describes the 
effects of the tangential and normal stresses. 
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Fig. 4. Effect of the elastic medium on the dimensionless 

natural frequency 
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4. Conclusion 

In this study, the vibration and instability of a viscoe-
lastic Y-SWCNT conveying fluid embedded on Pas-
ternak is investigated using Euler-Bernoulli beam 
model considering nonlocal and surface effects. The 
fluid flow was assumed to be viscose, irrotational, ful-
ly developed and isentropic. Regarding fluid flow ef-
fects, it has been concluded that the fluid flow is an 
effective factor on increasing the instability of Y-
SWCNT. Furthermore, surface effects depend on the 
surface crystal orientation and material type. 
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