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Abstract 
In this research, the surface stress effect on the nonlocal vibration of 
piezoelectric square plate reinforced by single walled carbon 
nanotubes (SWCNTs) based on classical plate theory (CPT) and 
first order shear deformation theory (FSDT) is presented. The 
elastic properties of piezoelectric nanocomposite plate are estimated 
by Eshelby-Mori-Tanaka and the extended mixture rule approaches. 
The motion equations of nanocomposite plate are obtained using 
Hamiton's principle. The Navier's type solution is used to solve 
these equations. There is the best agreement between the obtained 
analytical results and other literature results. Then the effects of 
various parameters such as elastic foundation, surface stress, 
agglomeration, applied voltage and magnetic field on the nonlocal 
natural frequency of piezoelectric square nanocomposite plate are 
investigated. It is concluded that the non-dimensional frequency 
ratio decreases with increasing the SWCNT volume fraction in the 
inclusion (agglomeration effect), nonlocal parameter and residual 
surface stress constant for both CPT and FSDT. Also it is seen that 
a change in the applied voltage, magnetic field intensity, elastic 
foundation parameters and surface density leads to increase the 
non-dimensional frequency ratio.  
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1. Introduction 
The mechanical behavior of materials at the 

atomic and molecular scales is investigated in nano 
science framework. As dimensions of material 
become smaller, the material properties such as 

strength, high electrical conductivity, density, etc. 
change dramatically. Nowadays, with the 
development of technology and probable 
applications of nano materials with unique 
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properties, nano-materials have been taken into 
consideration and these materials have been used 
numerous application such as nano-ceramic 
superconductors, nano-electro-mechanical systems, 
nano-medicine, nano textile, and etc. In this regard, 
carbon nanotubes (CNTs) as single and multi-
layers were found in many applications due to their 
high tensile strength (100 times the strength of 
steel), high thermal conductivity and excellent 
electrical conductivity. The unique properties of 
CNTs have made it possible to be used in many 
aspects including fuel cells, reinforcement of 
composites, electromechanical devices, 
nanomachines and etc [1]. Also because of the 
excellent thermal and electrical conductivity of 
CNTs in comparison with other materials, they can 
be used as filler in polymer composites and 
extremely improve their properties. 

In recent decades, many researchers have 
investigated the vibrational behavior of nano-plate. 
Murmu and Pradhan [2] studied the nonlocal plate 
model for free in-plane vibration of nano-plates 
using separation of variables. They concluded that 
without considering the small length scale effect, 
the classical (local) plate has over estimated results 
for the free in-plane vibration, also the nonlocal 
effect on it for the square-type nano-plates is 
higher than that of on the strip- type nano-plates 
(nanoribbons). Aghababaei and Reddy [3] 
presented the analytical solutions of bending and 
free vibration of a simply supported rectangular 
plate via nonlocal third-order shear deformation 
plate theory (TSDPT). They found that increasing 
of the nonlocal parameter decreases the natural 
frequencies and increases the deflection of plate. 
Also difference between results of nonlocal theory 
and local theory is considerable. Ansari et al. [4] 
studied the nonlocal vibrations of multi-layered 
graphene sheets (MLGS) surrounding by elastic 

medium using finite element model. They 
concluded that difference between the natural 
frequencies in high aspect ratios can be neglected. 
Also they found that the natural frequencies 
increase with an increase in the value of elastic 
medium and the natural frequencies are more 
affected by the small length scale particularly in 
higher vibration modes. Ghorbanpour Arani et al. 
[5] obtained the natural frequencies of the double 
walled carbon nanotubes (DWCNT) embedded in 
an elastic medium using the Rayleigh–Ritz 
method. They showed that the elastic medium 
increases the stability of DWCNT. Wang et al. [6] 
investigated the vibration behavior of the double-
layered nano-plates considering thermal effect via 
the nonlocal continuum theory. They concluded 
that as the half wave number increases, the effect 
of small scale and thermal effect on the natural 
frequencies are more considerable. Ansari and 
Sahmani [7] presented the free vibration behavior 
of nano-plates considering the surface stress effects 
based on CPT and FSDT. They showed that the 
surface stress effect parameter has more 
considerable effect on the natural frequency of 
nano-plate for both theories. Also fundamental 
frequency of the nano-plate decreases with non-
positive value of the surface Lame constants and 
vice versa for positive of the surface Lame 
constants. Furthermore, fundamental frequency 
decreases with an increase of the residual surface 
stress. Wang et al. [8] studied the surface energy 
effects on the nonlocal vibration of Kirchhoff and 
Mindlin nanoscale plates for simply supported 
boundary conditions. They showed that the surface 
energy effect on the natural frequencies of the 
nano-plates is more considerable and the natural 
frequency of the nano-plates increases considering 
the surface energy particularly for lower 
frequencies but the nonlocal parameter has 
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reduction effect on the natural frequency and this 
reduction is higher for higher vibration mode 
numbers. Jomehzadeh and Saidi [9] used 
decoupling the displacement field equations theory 
for three dimensional vibration analysis of nano-
plate via nonlocal elasticity theory. They employed 
Navier's type solution and Fourier series technique 
for extending analytical three dimensional solution 
of a nano-plate. They concluded that the non-
dimensional frequency decreases with increasing 
of the thickness to length ratio in constant nonlocal 
parameter and this decrease in the second mode is 
higher than that of in the first mode. Navier and 
Levy solution methods for buckling and vibration 
of nano-plates using nonlocal elasticity theory for 
CPT are carried out by Aksencer and Aydogdu 
[10]. Electro-thermo-nonlocal axial vibration 
analysis of single-walled boron nitride nanorods 
(SWBNNRs) is studied by Mohammadimehr and 
Rahmati [11]. They concluded that effect of the 
small scale on the natural frequencies is higher in 
lower aspect ratios and higher natural frequencies. 
Aksencer and Aydogdu [12] studied Navier's 
solution for the nonlocal forced vibration of single 
layered graphene sheets (SLGS). They showed that 
the nonlocal dynamic deflection is higher than the 
local dynamic deflection and the dynamic 
deflection decreases with increasing of aspect ratio 
of SLGS and the nonlocal parameter. An analytical 
solution obtained for vibration of SLGS resting on 
Pasternak foundation with modified couple stress 
theory by Akgz and Civalek [13]. They found that 
the normalized natural frequencies decreases with 
increasing the aspect ratio of SLGS and vice versa 
for increasing of the length to thickness ratio and 
material length scale parameter effect on the 
natural frequencies decreases as values of Winkler 
and shear modulus parameters increases. Vibration 
behavior of rectangular SLGS as a nanomechanical 

sensor based on CPT using Galerkin method is 
investigated by Shen et al. [14]. They concluded 
that the natural frequencies of SLGS decrease with 
an increase in the mass of nanoparticle or with 
closing it to center of SLGS. By existence of the 
nonlocal parameter, the natural frequency of SLGS 
decreases. The natural frequency of SLGS has 
more changes for the lower side lengths of the 
SLGS with presence of nanoparticle. Shakouri et 
al. [15] investigated the small scale effect on the 
flexural vibration of SLGS based on atomistic 
structural mode and couple stress theory. They 
used the general weak form Galerkin method for 
free vibration analysis with in-plane pre-stress 
loads and environmental stiffness. Their studies 
showed that for atomistic structural model, the 
frequencies of graphene sheets more affected by 
in-plane pre-stress loads and environmental 
stiffness. Hashemi et al. [16] extended analytical 
nonlocal free vibration of Mindlin rectangular 
nano-plates for Levy-type boundary conditions. 
They employed the potential functions and 
separation of variable method for the displacement 
variables decoupling. They showed that the 
difference between nonlocal and local frequencies 
of nano-plate is important in the high nonlocal 
parameter value and the frequency ratio decreases 
with an increase in the nonlocal parameter and 
mode number. Wang [17] studied the bending and 
vibration of nano-plates considering the surface 
effect by finite element method based on Kirchhoff 
and Mindlin plate theories. They found that surface 
stress effect play an important role on the 
fundamental frequency particularly in smaller 
thickness for both Kirchhoff and Mindlin plate 
theories. Rahmati and Mohammadimehr [18] 
investigated the vibration analysis of non-uniform 
and non-homogeneous boron nitride nanorod 
embedded in an elastic medium under combined 
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loadings using differential quadrature method 
(DQM). They indicated that the non-dimensional 
frequency ratio of non-homogeneous boron nitride 
nanorod decreases with presence of electro-thermal 
loadings and effect of them on the non-dimensional 
frequency ratio is higher in short nanorods and 
higher nonlocal parameter. Malekzadeh and 
Shojaee [19] developed two-variable refined plate 
theory for nonlocal free vibration of nano-plates 
with different types of boundary conditions using 
the differential quadrature method (DQM). They 
also obtained analytical solution for simply 
supported boundary conditions. They concluded 
that this theory can be compared with FSDT and 
higher order shear deformable theory (HSDT). 
Increasing the nonlocal parameter and the aspect 
ratio of the nano-plates has decreasing effect on the 
natural frequency parameter. The nonlocal 
transverse vibration of SLGS embedded in elastic 
foundation under in-plane magnetic field is 
investigated by Murmu et al. [20] for simply 
supported boundary conditions. They found that 
the frequency parameter of square SLGS increases 
with in-plane magnetic field parameter and also the 
frequency in higher modes is more affected by the 
nonlocal parameter than in-plane magnetic field 
parameter. Thermo-electro-mechanical vibration of 
simply supported piezoelectric rectangular nano-
plates via the nonlocal theory and CPT are 
considered by Liu et al. [21]. They concluded that 
the influence of thermal- electro-mechanical 
loadings on the natural frequencies of piezoelectric 
nano-plates is very significant. Moreover the 
nonlocal parameter effect has reduction effect on 
the natural frequencies. Zhang et al. [22] studied 
the surface effect on nano-piezoelectric plates. 
They used material properties proposed by Millere 
and Shenoy. They concluded that with the surface 
stress effect the resonant natural frequency of 

nano-piezoelectric plates is higher than that of 
without considering the surface stress effect. 

    Pradhan and Kumar [23] illustrated the 
vibration behavior of orthotropic graphene sheets 
with various boundary conditions using DQM via 
nonlocal elasticity theory. Their results indicated 
that the non-dimensional frequency of isotropic 
plate is greater than that of the orthotropic plate. 
Malekzadeh et al. [24] investigated the free 
vibration of orthotropic arbitrary straight-sided 
quadrilateral nano-plates based on FSDT using the 
DQM. They showed that for the same thickness, 
the small scale effect on the frequency parameter 
of the quadrilateral nano-plates increases more 
than those of the rectangular one. Ghorbanpour 
Arani et al. [25] presented the buckling analysis of 
laminated composite rectangular plates reinforced 
by SWCNTs using analytical and finite element 
methods. Mori-Tanaka approach is employed to 
obtain the elastic properties of laminated 
composite rectangular plates. The critical buckling 
load decreases with increasing of CNT orientation 
angle . 

Pouresmaeeli et al. [26] presented Navier's type 
solution for free vibration of the double-orthotropic 
nano-plates surrounded by elastic foundation for 
in-phase, out of phase and stationary modes. Their 
results indicated that the non-dimensional 
frequency of orthotropic plate is smaller than that 
of isotropic plate. Also they showed that the non-
dimensional frequency of double-orthotropic nano-
plates increases with increasing of elastic 
foundation and this increase for out of phase 
vibration mode is higher than other vibration 
modes. Nonlocal vibration analysis of orthotropic 
nano-plates with thickness variation for different 
boundary conditions is studied by Shahidi et al. 
[27]. They computed the size dependent natural 
frequencies of non-uniform nano-plates based on 
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CPT with finite element method. They showed that 
the natural frequencies increases with increasing of 
thickness and this increase are greater in higher 
mode number . 

   Vibrations of carbon nanotube-reinforced 
composites (CNTRC) with Eshelby–Mori–Tanaka 
approach and equivalent continuum model is 
studied by Formica et al. [28]. The matrix material 
of composite is assumed rubber, concrete and 
epoxy. They showed that the frequencies of 
CNTRC increase with increasing of CNT 
orientation angle and the volume fraction of CNT. 
Khan et al. [29] investigated the vibration damping 
behavior of epoxy nanocomposites and carbon 
fiber reinforced polymer composites (CFRPs) 
including multi-walled carbon nanotubes 
(MWCNTs) by the free and forced vibration tests. 
They reported that damping ratio of CFRPs is 
lower than that of epoxy nanocomposites. 
Damping ratio of both epoxy nanocomposites and 
CFRPs are improved by CNTs both in mode 
vibration of 1st and 2st and this improvement is 
higher for epoxy nanocomposites than CFRPs, also 
damping ratio of CFRPs increases with increasing 
of CNTs. Lei et al. [30] investigated the free 
vibration analysis of functionally graded 
nanocomposite plates reinforced by SWCNTs 
using the element-free kp-Ritz method in thermal 
environment based on FSDT with different 
boundary conditions. The material properties of the 
functionally graded nanocomposite plates are 
varied through the thickness direction by linear 
function of the volume fraction of CNTs. They 
used Eshelby–Mori–Tanaka and extended mixture 
rule approaches for material property estimation of 
CNTRC plate. They showed that the non-
dimensional fundamental frequency of various 
types of CNTRC plates increases with an increase 

of CNT volume fraction and width to thickness 
ratio. 

In this article the free vibration behavior of 
piezoelectric square nanocomposite plate 
reinforced by SWCNTs based on CPT and FSDT 
is investigated. Influences of nonlocal parameter, 
surface stress, SWCNT volume fraction, SWCNT 
orientation angle, aspect ratio, applied voltage, 
magnetic field and elastic foundation on vibration 
behavior of piezoelectric plate reinforced by 
SWCNTs are studied. Material properties of 
piezoelectric square plate reinforced by SWCNTs 
are predicted by Eshelby-Mori-Tanaka and the 
extended mixture rule approaches. Also stress 
surface and agglomeration effects on the free 
vibration of piezoelectric nanocomposite plate 
reinforced by SWCNTs are investigated. 
 
2. Various approaches to obtain the elastic 

properties of nanocomposite  
In this section, Eshelby-Mori-Tanaka (E-M-T) 

and the extended mixture role (E-M-R) approaches 
to obtain material properties of piezoelectric 
nanocomposite plate reinforced by SWCNTs are 
presented. 
 

2.1. The extended mixture rule approach 

In E-M-R approach, the material properties of 

nanocomposite are defined as the following 

equation [31]. 

 

1 1 1f f m mE E V E V   (1) 
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where 1 , 2  and 3  are constants which are 

defined by the molecular dynamic simulations and 

usually vary from 0.7 to 1. 1 fE and 2 fE  are 

longitudinal and transverse elastic modulli, 

respectively. 

 

2.2. Eshelby-Mori-Tanaka approach 

In this approach, it is assumed that nanocomposite 

reinforced by straight and long CNT fibers; also 

the fibers are uniformly distributed in the isotropic 

matrix of composite. The stiffness coefficients are 

stated as follows [32]. 
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(3) 

 

where m is the Poisson’s ratio of matrix 

and fk , fn  , fm  and fp are the Hill’s elastic 

modulli for the CNTs [32]. 

 

3.The agglomeration effect of SWCNT  

The SWCNT fibers are accumulated in polymeric 

matrix due to lower flexural strength of CNT in its 

radial direction. Because of it, accumulation of 

CNT in several zone of nanocomposite matrix is 

higher than in other zones. For specification of this 

phenomenon, the spherical region of accumulation 

is called inclusion and two material constants K 

and G both inside and outside of inclusion are 

defined as the following equations [32]: 
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(4) 

 

where   and   are inclusion volume to total 

volume ratio and SWCNT volume fraction in the 

inclusion ratios, respectively. If SWCNT fibers 

are uniformly distributed in matrix then   is equal 

to 1 and if thorough fiber agglomeration is 

happened then   is equal to 1.in Eq. (4), f , f , 

f  and f  are written as follows [32]: 
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4. The motion equations of nanocomposite plate 

based CPT and FSDT  

If the mid-plane displacements of the plate in the x 

and y directions are zero, The displacement fields 

of CPT and FSDT can be stared as follows: 
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where u, v, and w are the components of 

displacement fields along x, y and z coordinates, 

respectively. x and y  are rotation components 

about to x, y coordinates. It can be noticed that x  

and y are equal to ( , ) /w x y x   and 

( , ) /w x y y   for CPT, respectively.  

The kinematic equations are written as: 
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The constitutive equations for the piezoelectric 

plate can be written as:  

 



354             
 

M. Mohammadimehret al./ JNS 4 (2014) 347-367 

11 12

12 22
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55
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0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 0
0 0
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0 0
0 0 0

0 0 0 0
0 0

x x

y y

yz yz

xz xz

xy xy

x

y

z

x

y

z

Q Q
Q Q

Q
Q

Q

e
Ee
Ee
Ee

D e
D
D

 
 
 
 
 

    
    
            

    
    
        
 
         
   

  
  

 
   
 
 

24

31 32

11

22

33

0 0
0 0 0

0 0
0 0 , ,
0 0

x

y

yz

xz

xy

x

y

z

e
e e

E
E i j x y
E












 
         
     
  

   
     
     

 

(8

) 

In the above expressions ij , iD , ij  and iE  are 

the stress, electrical displacement, strain and 

electric field components, respectively. ijQ ، ije and 

ii are also stiffness matrix, piezoelectric and 

dielectric coefficients, respectively. The electric 

field in terms of the electric potential   can be 

expressed as follows:  

  

(9) 
,i iE    

 

The potential function is applied in the thickness 

direction of the nanocomposite plate. This function 

must also satisfy Maxwell's equations. This 

function is considered as follows [33]: 

 

 

(10) 
0

( , , , ) cos( / ) ( , , )
2 /i t

x y z t z h x y t
zV e h

    
 

 

In the above equation, 0V is external applied 

electrical voltage, ( , , )x y t denotes arbitrary 

function of time and location that will satisfy the 

Maxwell's equation.  is the natural frequencies 

of the nanocomposite plate that becomes zero in 

buckling mode. 

If the carbon nano-fibers in the matrix of the 

nanocomposite plate have angle , the coefficients 

of fundamental relations must be changed as 

follows:  

 

(11) ' 1 ' 1 ' 1, Re ,Q RQR e R R R       
 

where R is the rotation matrix that is considered as 

the following form: 

 

 

 

(12) 

2 2

2 2

2 2

0 0 2
0 0 2

0 0 0
0 0 0

0 0

n m nm
n m nm

R n m
m n

nm nm n m

 
 
 
 
 

 
    

 

where: 

 

(13) 
cos( )
sin( )

n
m





  

 

Energy method and Hamilton's principle are 

applied to obtain the motion equations of 

piezoelectric nanocomposite plate reinforced by 
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SWCNT. Considering the stress surface effect, 

Hamilton's principle can be stated as follows: 

 

(14)   0s s
ixtT T W U U dt          

 

where U, sU , T , sT and extW are strain energy, 

the surface strain energy, kinetic energy, the 

surface kinetic energy and the work done by the 

external forces, respectively. Subscript "s" 

illustrates the surface stress effect. 

Variation of strain energy is considered as follows: 

 

 

(15) 
x x y y xy xy

x x y y z zV

U dV
D E D E D E
     


  

   
     
  

 

Substituting Eqs. (7), (8) and (5) into Eq. (15) and 

simplifying it, strain energy variation can be 

written as follows: 

 

 

(16) 

2

, 13 0 ,2

2

23 0 , ,2

, ,

2

2

cos

cos

sin

x x x y y y

xy y x xy x y
A

xz x xz x yz y yz y

x

y

A

z

wM e V w M
x

wU e V w M M dA
y

N N w N N w

z D
h x

Dz
h y

z D
h h

  

   

   




 

 


 
    
     

    
 
 

          
       

  
  

  




/2

/2

h

h
dzdA

 






 

 

where ijN and ijM  are the resultant forces and 

moments, respectively, which are defined as: 

 

(17) 

/2

/2

/2

/2

,

x x

y yh

xy xy
h

xz xz

yz yz

x xh

y y
h

xy xy

N
N
N dz
N k
N k

M
M z dz
M















   
   
         
   
   
      
   
      
   
   





 

 

To consider the effect of surface tension is 

assumed that z  varies linearly along the z 

coordinate. Assuming constant surface properties 

of the top and bottom layers of the nano-plate, the 

surface stresses are stated as [7]: 

  

(18) 

2 2 2

2 2 2

2 2 2

2 2 2

2
(1 )

2
(1 )

s
x s s s s x s

s
y s s s s y s

s
xz s

s
yz s

z w w w E
h x y t

z w w w E
h x y t

w
x
w
y


     



     


 

 

   
         

   
         










 

 

where sE , s  and s  are the surface Lame 

constant, residual stress constant and surface 

density, respectively. Substituting Eq. (7) into Eq. 

(18) yields:  
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(19) 

2 2 2

2 2 2

2 2 2

2 2 2

2
(1 )

2
(1 )

s x
x s s s s s

ys
y s s s s s

s
xz s

s
yz s

z w w w zE
h x y t x

z w w w zE
h x y t x

w
x
w
y

    


    


 

 

    
          

   
          










 

 

Variation of the surface strain energy of 

nanocomposite plate is calculated as follows: 

 

(20) 
s s
x x y ys
s s

A xz xz yz yz

U dAdz
   


   

  
  

  
  

 

Substituting Eqs. (7) and (19) into Eq. (20) and 

simplifying it, the following equations can be 

obtained: 

For nano-plate (matrix): 

 

(21) 

2 23 3
4

3 2

2 3 3 2 2

3 2 2 2

22
2 3

2 2

2 3 3

2 2

6(1 ) 6(1 )

4 ( )
6(1 )

( / 2 /6)

6(1 )

s s s
x

s
y s

yx
s x y

s
x

h hw wU w w
x x y

h w w w wb h w
y y x x y

E bh h
x y

h w w
t x t y

 
  

 


  




 


 



           
      

               
 

      

 
 

    

2 4 4

2 2 2 2

2 ( )

6(1 )

y

s x y

s

w wb h
x y

h w w w
t x t y



  






 
 
 
       

  
       

 

 

For SWCNT (fibers) [34]: 

 

2 2

2 2

22
3

2 2

4

(3 / 8)

s
cnt s cnt

yx
scnt x y

w wU d w
x y

E d
x y

  


  

  
      

 
    

 

(22) 

 

Kinetic energy variation and surface kinetic energy 

variation can be expressed as following equations: 

 

(23) 
2 2 2

2 2

22

2

12

12

V

x
x

V y
y

u u v v w wT dV
t t t t t t

h wh w
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h
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 
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 
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       
 

  





 

 

(24) 

2
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2
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2
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2
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s
s

V

x

y
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A
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t
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t
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




               

 
   

 
    

   





 

 

where  is density of nanocomposite plate. 

Work done by external forces such as Pasternak 

foundation and the Lorentz force are considered in 

this research.  First Lorentz forces due to the 

magnetic field that is entered separately in the 

three coordinate directions are extracted then 

variation of the work done by these forces is 

presented. 
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The electro-dynamic Maxwell's equations for the 

nanocomposite plate can be written as [35]: 

 

 

 l

h U H

J h

f J H

  

 

 

  



 

 

(25) 

 

where U , H and   are the displacement field (u, v, 

w), the magnetic field and the magnetic 

permeability, respectively. If the magnetic field (0, 

0, Hz), is applied in the thickness of the 

nanocomposite plate then substituting it in Eq. 

(25), Lorentz forces are obtained as follows: 

 

(26) 

222 2
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 
 

    
               

    
               

 

 

Then variation of the work done by the Lorentz 

forces is calculated as: 

 

 

(27) 

 
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          





 

 

Work done by to the elastic foundation can be 

written as: 

 

(28) 

 

 2

pf
ext w g

A

w g
A

W f w f w dA

k w w k w w dA
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


 

 

where wk  and gk  are Winkler spring and 

Pasternak shear constants, respectively. 

Substituting of the obtained relations into Eq. (14) 

becomes the following equation: 
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 
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(29a) 
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 
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 
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(29b) 
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  
         
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(29c) 
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/2

/2
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cos sin
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h x
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h y h h

 

   

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            



 

(29d) 

 

To consider the small-scale effect, the nonlocal 

piezoelasticity theory is used. According to this 

theory, stresses at a small scale can be stated as 

follows [5]: 

 
2 2

0
2 2

0

(1 ( ) )

(1 ( ) )

nonlocal local

nonlocal local

e a
e a D D

   

    
(30) 

 

where 0e a  and 2  are the nonlocal parameter and 

the Laplacian operation, respectively. Using Eq. 

(30), the nonlocal motion equations are obtained as 

follows:  
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Substituting Eqs. (8) and (19) into Eq. (31) yields 

the following equations: 
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(33) 

 

Assuming that the boundary conditions are simply 

supported on all edges of the nanocomposite plate, 

Navier's type solution can be used to solve the 

motion equations as follows: 
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where m and n are the half axial and transverse 

wave numbers, respectively.  

Substituting Eq. (34) into Eq. (32), the matrix form 

for the motion equations of nanocomposite plate 

can be expressed as follows: 

for FSDT: 
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where  
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To obtain the natural frequncy for Eq. (39a), the 

determinant of coefficient matrix should be equal 

to zero: 

 

2 0K M 
 

(39) 

 

4. Results and discussion 
Nanocomposite square plate made of 
polyvinylidene fluoride (PVDF) reinforced by 
SWCNTs is considered in this research. Due to 
piezoelectric property of PVDF and magnetic 
property of SWCNTs, these composite 
structures easily undergo the combined 
loadings. For validation of the research with 
other literatures, two steps are used as: firstly, 
using the properties of nano-plate which listed 
in Table 1, the natural frequencies of the 
square nonoplate with considering surface 
stress effect are compared with the obtained 
results by Ansari and Sahmani [7]. It is 
observed that there is a good agreement 
between them (Table 2).  

Table 1. Surface and material properties of the 
square nano-plate 

Material properties 
Young modulus 177.3GPa  
Poisson's ratio 0.27 

Density 7000 3/Kg m  
Residual surface 
stress constant 1.7 /N m  

Lame surface stress 
constant -3 /N m  

Surface density 7e-6 2/Kg m  

 
Table 2. The non–dimensional fundamental 

frequencies of the square nano-plate (h=1nm) 

b/h 11 22 33 
[7] Present [7] Present [7] Present  

10 1.003 1.003 1.023 1.023 1.056 1.0562  
20 0.998  0.998  1.003 1.003 1.011  1.0106 
30 0.997  0.997 0.999 0.999 1.003 1.003 
40 0.997  0.997  0.998  0.998  1.000  1.000 
50 0.997 0.997 0.997 0.997 0.999  0.999 

 
In the second step, the non–dimensional 
fundamental natural frequencies of 
nanocomposite plate reinforced by SWCNT 
for various width to thickness ratio (b/h) and 
SWCNT volume fractions are listed in Tables 
3 and 4, respectively. It can be shown the 
results are very closer to the obtained results 
by Zhu et al. [36]. Material properties, surface 
properties and geometry dimensions of 
piezoelectric nano-plate reinforced by SWCNT 
which are used in this research are listed in 
Table 5.  

Table 3. The non–dimensional natural frequencies of 
composite plate reinforced by CNT 

b/h 11 22 33 
[7]  Present [7] Present [7] Present  

10 1.003 1.003 1.023 1.023 1.056 1.0562  
20 0.998  0.998  1.003 1.003 1.011  1.0106 
30 0.997  0.997 0.999 0.999 1.003 1.003 
40 0.997  0.997  0.998  0.998  1.000  1.000 
50 0.997 0.997 0.997 0.997 0.999  0.999 
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Table 4. The non–dimensional natural frequencies 
of composite plate reinforced by CNT 

CNTV  /b h  Present [36] 

0.11 10 13.5099 13.532 
 20 17.3042 17.355 
0.14 10 14.9106 14.306 
 20 18.8946 18.921 
0.17 10 16.7840 16.815 
  43.0968 40.630 
 20 21.3888 21.456 

 
 
Table 5. Material properties, surface properties and 

geometry dimensions of square nano-plate 
reinforced by CNT 

Parameters PVDF CNT 

Elastic module 2.5GP
a - 

Poisson's ratio 0.3 0.175 
Volume fraction - 0.14 

Residual surface stress 
constant 

1.7 
N/m 

0.9108 
N/m 

Lame surface stress constant 4 N/m 5.1882 
N/m 

Orientation angle - 0 
Nonlocal parameter 0.5nm 0.5nm 

Longitudinal elastic module - 5.6466 TPa 
Transverse elastic module - 7.08 TPa 

Shear module  1.9445 TPa 
Length 20nm 20nm 
Width 20nm - 

Thickness 2nm - 
Outer diameter - 1.4940nm 
Inner diameter  1.36n m 

 
 
The effects of various parameters on the 
fundamental frequencies of piezoelectric 
square nano-plate reinforced by SWCNT are 
studied. E-M-T and E-M-R approaches are 
used to define material properties of 
piezoelectric nanocomposite plate.  
Fig. 1 shows the non-dimensional frequency 

ratio ( /nonlocal local  ) of piezoelectric 

nanocomposite plate versus SWCNT 
orientation angle for CPT and FSDT. As it can 

be seen that /nonlocal local   decreases with an 

increase in SWCNT orientation angle up pi/4 
for CPT and vice versa for FSDT. Also 

/nonlocal local  decreases with increasing of the 

nonlocal parameter ( 0e a ) for both plate 

theories. This fact is due to increasing atomic 
distance. The results of E-M-R approach are 
closer to E-M-T approach for FSDT with 
respect to CPT. 
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b 

Fig. 1. /nonlocal local  of piezoelectric 
nanocomposite plate against CNT orientation angle 
for various nonlocal parameter values a- CPT        
b- FSDT 
 
Fig. 2 depicts the effect of elastic foundation 

parameters on /nonlocal local   for FSDT and 

CPT. As it can be seen for both theories 

/nonlocal local  increases with the presence of 
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elastic foundation. Also it is clear that the 

results of /nonlocal local   for both E-M-R and 

E-M-T approaches are very closer together.  
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b- 

Fig. 2. /nonlocal local  of piezoelectric 
nanocomposite plate versus the shear constant 
( gk )forvarious Winkler spring constant a- CPT    
b- FSDT 
 
Fig. 3 illustrates the effects of applied 
magnetic field and voltage on 

/nonlocal local  for CPT and FSDT. It is 

concluded that /nonlocal local   increases with 

an increase in the applied magnetic field and 
voltage. As magnetic field in z direction and 
voltage are applied on piezoelectric 
nanocomposite plate, compressive loads are 

produced, then /nonlocal local   increases. Also 

these effects on /nonlocal local  are higher for 

FSDT with respect to CPT. Also it is 
concluded that effect of applied magnetic field 

and voltage on /nonlocal local   for CPT are 

negligible. 
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b- 

Fig. 3. /nonlocal local  of piezoelectric 
nanocomposite plate with respect to magnetic field 
intensity for various applied voltages  a- CPT        
b- FSDT 
 
 Effects of nano-plate residual surface stress 

( s ) and surface Lame constants ( sE ) on 

surface fundamental frequency to non-surface 

fundamental frequency ( /surface nonsurface  ) are 

displayed in Figs. 4. It can be observed that 
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/surface nonsurface   increases with an increase in 

s  for both plate theories but effect of sE  on 

/surface nonsurface   isn’t considerable.  
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Fig. 4. Effects of residual surface stress constant 
and surface Lame constant on /surface nonsurface  of 
piezoelectric nanocomposite plate  a- CPT b- FSDT 
 
Effects of residual surface stress constant and 

surface density ( s ) on /surface nonsurface  of 

piezoelectric nanocomposite plate for CPT are 
shown in Fig. 5. It is clear that 

/surface nonsurface   increases with increasing 

of s .  
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Fig. 5. Effects of residual surface stress constant 
and surface density on /surface nonsurface  of 
piezoelectric nanocomposite plate for CPT 
 
Fig. 6 illustrates the influences of inclusion 
volume to total volume ratio ( ) and SWCNT 

volume fraction in the inclusion ( ) ratios on 

/nonlocal local   of piezoelectric composite 

plate for CPT and FSDT. It is concluded that 

/nonlocal local   decreases with increasing of 

  and vice versa for . As   increases, the 

SWCNT accumulation in PVDF increases 

hence /nonlocal local   decreases.   

In Fig. 7, effects of the nonlocal parameter and 

aspect ratio ( /a b ) on /nonlocal local  of 

piezoelectric nanocomposite plate for CPT and 
FSDT using the E-M-R are demonstrated. As it 

can be seen that deference of /nonlocal local   

in higher nonlocal parameter for FSDT is 
higher than that of for CPT. 
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Fig. 6. Agglomeration effects on /nonlocal local  of 
piezoelectric nanocomposite plate a- CPT b- FSDT 
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Fig. 7. Effects of the nonlocal parameter and aspect 
ratio on /nonlocal local  of piezoelectric 
nanocomposite plate for CPT and FSDT using the 
extended mixture rule  

 
 
 

5. Conclusions 
In this article, the free vibration analysis of 
piezoelectric nanocomposite plate reinforced 
by SWCNT based on CPT and FSDT is 
studied. The extended mixture rule and 
Eshelby-Mori-Tanaka approaches are 
employed to obtain elastic properties of the 
nanocomposite. The motion equations are 
derived by energy method and Hamilton 
principle. Navier 's method is used to obtain 
the natural frequency of piezoelectric 
nanocomposite plate. Influences of the 
nonlocal parameter, aspect ratio, SWCNT 
volume fraction, SWCNT orientation angle, 
surface stress parameters, elastic foundation 
parameters, magnetic fields and external 
applied voltage, SWCNT agglomeration effect 
and surface stress effect on the non-
dimensional frequency ratio of piezoelectric 
nanocomposite plate are investigated. The 
results of this research can be stated as follows: 

1-  The nonlocal fundamental frequency to local 

fundamental frequency ratio ( /nonlocal local  ) 

of piezoelectric nanocomposite plate increases 
with an increase in volume fraction of SWCNT, 
aspect ratio of b/h, aspect ratio of a/b, elastic 
foundation parameters, applied voltage, 
magnetic field and inclusion volume to total 
volume ratio ( ). 

2-  /nonlocal local   of piezoelectric nanocomposite 

plate decreases with increasing of SWCNT 
orientation angle for CPT, SWCNT volume 
fraction in the inclusion ( ) and the nonlocal 

parameter. 

3- Increasing of /nonlocal local   of piezoelectric           

nanocomposite plate with the positive applied 
voltage is more than that of with negative 
applied voltage. 
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4- The surface frequency to non-surface frequency 

ratio ( /surface nonsurface  ) of piezoelectric 

nanocomposite plate increases with increasing of 
surface density.  

5- /surface nonsurface  of piezoelectric nanocomposite 

plate decreases with increasing of residual surface 
stress constant. 
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