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Abstract 
In this paper, surface and piezoelectric effects on the vibration 
behavior of nanowires (NWs) are investigated by using a 
Timoshenko beam model. The electric field equations and the 
governing equations of motion for the piezoelectric NWs are derived 
with the consideration of surface effects. By the exact solution of the 
governing equations, an expression for the natural frequencies of 
NWs with simply-supported boundary conditions is obtained. The 
effects of piezoelectricity and surface effects on the vibrational 
behavior of Timoshenko NWs are graphically illustrated. A 
comparison is also made between the predictions of Timoshenko 
beam model and those of its Euler-Bernoulli counterpart. 
Additionally, the present results are validated through comparison 
with the available data in the literature. 
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1. Introduction 
In recent years, NWs have attracted a lot of 

attention for a diversity of technological 
applications in biotechnology, electronics and 
photonics as sensors, actuators, transistors, probes 
and resonators [1-3]. Existing results reveal that 
the mechanical behavior of nanostructures is size-
dependent. Because of high surface-to-bulk ratio, 
the physical and chemical properties of 
nanomaterials are affected by surface effects. In 
this regard, so many endeavors have been made to 
understand the influence of surface effects on 
nanostructures. For example, the effects of surface 
elasticity on the resonance frequency of 

nanobeams were studied by Gurtin et al. [4] and Lu 
et al. [5]. Miller and Shenoy [6] investigated the 
stretching and bending problems of nanosized 
structural elements. The effects of both surface 
stress and surface elasticity on the vibration of 
nanobeams were studied by Wang and Feng [7]. 
Ansari and sahmani [8] studied bending behavior 
and buckling of nanobeams with the consideration 
of surface effects for different types of beam 
theories. 

In addition, much effort has been performed for 
studying the surface effects on mechanical 
properties of NWs. Cuenot et al. [9] have displayed 
that the stiffness of NWs is size-dependent. By 
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using Euler–Bernoulli beam theory, He and Lilley 
[10] demonstrated the surface effects on the elastic 
behavior of NWs. Park [11] studied the surface 
stress on the resonant frequencies of silicon NWs 
with finite deformation using the surface Cauchy–
Born model. 

On most existing studies, NWs with a simple 
Euler–Bernoulli beam model were treated and the 
shear deformation and rotary inertia effects were 
neglected. The Euler–Bernoulli beam model can be 
utilized only for beam length-to-thickness ratios of 
the order 20 or more. In many applications, the 
length of NWs is not sufficiently large and 
utilizing the Euler–Bernoulli beam model is not 
accurate. Hence, for the NWs with small length-to-
thickness ratios, employing the Timoshenko beam 
model is essential to catch the effects of rotary 
inertia and shear deformation. Recently, the 
surface effects on the buckling and vibration 
behavior of NWs were studied using the 
Timoshenko beam model. Using a comprehensive 
Timoshenko beam model, Jiang and Yan [12] 
investigated surface effects on the static bending of 
NWs. By using the Timoshenko beam theory, 
Wang and Feng [13] studied surface effects on the 
axial buckling and the transverse vibration of 
NWs. Hasheminejad and Gheshlaghi [14] 
investigated dissipative surface stress effects on 
free vibrations of NWs. In addition, this type of 
beam theories was applied in vibration and 
buckling behavior of other nanostructures [15-17].  

Piezoelectric nanostructures are being developed 
to convert nanoscale mechanical energy into 
electric energy [18,19]. Recently, piezoelectric 
NWs have attracted much attention due to their 
applications as diodes, nanoresonators and 
nanogenerators [20,21].Direct electricity was 
generated from piezoelectric NWs [22-24]. The 
electrostatic potential in a bending piezoelectric 

NW was calculated using the perturbation theory 
[25] and finite element method [26]. Studying the 
size-dependent behavior of piezoelectric NWs with 
surface effects has been reported in the literature. 
Gheshlaghi and Hasheminejad [27] presented an 
analytical model for predicting surface effects on 
the free vibrations of piezoelectric NWs based on 
the Euler-Bernoulli beam theory. Yan and Jiang 
[28] investigated the electromechanical coupling 
behavior of piezoelectric NWs with consideration 
of surface effects and surface piezoelectricity using 
Euler beam theory. Using Timoshenko beam 
theory, Samaei et al. [29] studied the buckling 
behavior of piezoelectric NWs under distributed 
transverse loading. By using the Euler–Bernoulli 
beam model, Wang and Feng [30] studied the 
effects of surface stresses on the vibration and 
buckling of piezoelectric NWs. 

Hosseini-Hashemi et al. [34] investigated 
surface effects on the free vibrations of 
piezoelectric nanobeam based on the nonlocal 
Euler-Bernoulli beam model. 

In this paper, an analytical method is presented 
to study the combined piezoelectric and surface 
effects on the vibrational behavior of piezoelectric 
NWs using the Timoshenko beam model. The 
electric field equations and the governing 
equations of motion are obtained and then, for 
NWs with simply-supported end condition, an 
exact expression of natural frequency is derived. 
The influence of piezoelectricity and surface 
effects on the vibrational behavior of piezoelectric 
NWs have been demonstrated. For a specific size 
of NW, the numerical results of the Timoshenko 
beam model are compared with those of the Euler-
Bernoulli beam model. 
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2. Overview of Timoshenko beam theory 
   Consider a simply-supported piezoelectric NW 
with length , width  and thickness  as shown in 

Fig. 1 and assume the deformation of this NW 
takes place in the  plane. So,  ,  and  

are the components along the axis and  of NW 

displacement vector, respectively. 

 
Fig. 1. Piezoelectric NW with rectangular cross section 
and its coordinate system 
 

The displacement field for a Timoshenko beam 
can be described by 

 
 

 
(1) 

 
 

 
where  denote the lateral deflection 

of the beam and the rotation of beam cross section, 
respectively. 

Also, the nonzero components of the strain 
tensor for this beam are given by 

 

 

 

(2) 

3. Surface and piezoelectric effects 
3.1. Surface effects 

 
The influence of surface energy or surface 

stresses on the mechanical behavior of 
nanomaterials is usually mentioned as surface 
effects.  denotes the surface stress tensor which 

is related to the surface energy density γ and is 
given by [31] 

 

(3) 

where  and  indicate the surface strain 

tensor and the Kronecker delta, respectively. 
The linear form of Eq. (3) is expressed as 

 
(4) 

in which and  are the residual surface tension 

under unstrained condition and the surface elastic 
modulus, respectively. These constants are 
specified by atomistic simulations or experimental 
measurements. 

 
3.2. Piezoelectric effect 

The linear constitutive equations for a 
homogeneous orthotropic piezoelectric material are 
given by: 

 

(5) 
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(6) 

 
where , ,  indicate the matrices of elastic 

constants, piezoelectric constants and dielectric 
constants, respectively. 

In the piezoelectric materials, the electric-field 
components are specified by the electric potential 

 as follows 

 

(7) 

The poling direction of the piezoelectric medium 
is along the positive x-axis, where (x, z) is a 
rectangular Cartesian coordinate system as shown 
in Fig 1. 

From numerical simulations which were 
reported in the literature, it can be concluded that 
for a piezoelectric NW subjected to bending, the 
electric potential along the NW (x-axis) except in 
the vicinity of two ends, is almost constant. So, the 
electric-field components satisfy  [18]. 

For a piezoelectric NW, the nonzero electric 
displacements components and the nonzero stress 
components are obtained From Eqs. (5) and (6) and 
are given by 

 
 

 
(8) 

 

 
 

 
(9) 

in which, dielectric constants and  are on the 

same order and , so the electric 

displacement  is insignificant in comparison 

with . 

Electrostatic equilibrium condition in the 
absence of electric changes is given by [30] 

 

(10) 

4. Derivation of the electric field equations 
and the governing equations of motion 
4.1. Electric field equations 

Using the Timoshenko beam model, substitution 
of Eqs. (1), (2), (7) and (8) into (10) leads to 
electric field equation as 

 

(11) 

in which a prime represents the derivative with 
respect to . 

Assuming  and  leads 

to the following equation for electric field 
 
 
 

(12) 
In addition, the nonzero components of stress 

tensor for this beam model can be obtained from 
Eqs. (7), (9) and (12), as   

 

 

                                           (13) 

where  is the shear coefficient which for 

rectangular cross-section is given by  
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(14) 

 
4.2. Governing equations of motion 

For a deformed beam, the presence of residual 
surface stress leads to generation of a distributed 
normal pressure . This pressure is along the 

longitudinal direction and depends on the curvature 
of the bending beam  [12,13] 

 
(15) 

where  indicates the curvature of the beam and 

 is a constant relevant to the residual surface 

stress and the cross-sectional shape which for a 
rectangular cross-section with width b is given by 
[12,13] 

 
(16) 

The influence of the second term in Eqs. (4) and 
(9), for a rectangular cross-section NW can be 
represented by the effective flexural rigidity 

 as 

 

 
(17) 

where E is Young’s modulus and  is inertia 

moment which for a rectangular cross-section is 

given by . 

On a cross-section of the NW, the bending 
moment  and shear force  are given by  

 

 

 

(18) 

The Euler-Lagrange equations for Timoshenko 
beam model are obtained in the form 

 
 

 
(19) 

where  is the resultant axial force which is 

generated by the applied electric potential and is 
defined in the form 

 

(20) 

Substituting Eqs. (15) and (18) into (19) gives 
the following equilibrium equations 

 

 

(21
) 

where a dot represents the derivative with respect 
to time. 
5. Free vibrations of the simply-supported 
NWs 

In this section, Navier solution of the governing 
equations is presented for the piezoelectric NW 
with simply-supported end conditions. This 
method is utilized for the Timoshenko beam model 
and the exact expression of natural frequencies is 
obtained.  

For this beam model, the periodic solutions are 
assumed in the following form 

 

 

 

(22) 

where  is the frequency of free vibration. 

Substitution of Eq. (21) into (22) and rearranging 
them in a matrix form gives 
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(23
) 

For obtaining non-trivial solution of Eq. (23), 
the determinant of the coefficient matrix must be 
equal to zero which results a characteristic 
equation. The eigenvalues of the obtained 
characteristic equation are the n-th natural 
frequencies of vibration for a piezoelectric NW 
with simply-supported end conditions. The 
expression of fundamental natural frequency for 
Timoshenko NW is obtained in the form of 

   (24) 
 
6. Results and discussion 

Here, the numerical results are given to illustrate 
the influence of piezoelectricity on the vibration 

behavior of the piezoelectric NW. consider a 
simply-supported piezoelectric NW which its 
material and physical properties are as: , 

, , ,  

, =0, , 

, . 

The natural frequency is normalized with respect 
to the fundamental frequency of classical Euler–

Bernoulli beam model as  and is 

obtained for the first mode .  

The results of present study can be verified 
through comparison with the ones reported in 
Ref. [27] on the basis of the Euler-Bernoulli       

beam theory as shown in Fig. 2,at  

for , which and   are 

material constant and internal characteristic 
length, respectively. 
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Fig. 2. Variation of the normalized fundamental 
natural frequency of Euler-Bernoulli simply-supported 
NW. 
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 with length L for different values of voltage 

( ). 

Also, to show the accuracy of the present 
analysis, normalized natural frequencies obtained 
from the present analysis are compared with those 
given in Refs. [33, 34]. Table 1 shows this 
comparison for different values of voltage.  
Table 1. Comparison between the results of present 
work and the obtained results from Refs. [33, 34] 
( ) 

 Euler-Bernoulli Timoshenko 
Volta
ge 

Ref. 
[33] 

Re
f. 
[34
] 

Prese
nt 

Ref. 
[33] 

Prese
nt 

 
1.02 - 1.028 0.98 0.977 

 
- 0.7

1 
0.74 - - 

 
1.03 0.9

9 
0.98 0.98

5 
0.981 

 
- 1.1

9 
1.187 - - 

 
1.05 - 1.2 0.99

6 
0.99 
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Fig. 3. Variation of the normalized fundamental natural 
frequency of Timoshenko simply-supported NW with 
length  for different values of voltage (a) , 

(b) , (c)  
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Fig. 4. Variation of the normalized fundamental natural 
frequency of Timoshenko simply-supported NW with 
voltage  for different values of . 

 
Fig. 3 gives the variation of the normalized 

fundamental natural frequency of the Timoshenko 
piezoelectric simply-supported NW with its 
length  for selected input voltages 

( ) and for different values of the 

length-to-thickness ratio. It can be found from 
these figures that by increasing the NW length, 
piezoelectricity effects gradually vanish. Also, the 
fundamental natural frequency increases by the 

increment in the length-to-thickness ratio . It is 

clear that decreasing the input voltage leads to 
decrease in the NW fundamental natural 
frequencies. For the positive values of voltage, 
increasing the length leads to decrease in the 
fundamental natural frequencies to a constant value 
and for the negative values of voltage, the 
fundamental natural frequencies are almost 
constant. When there is no applied voltage, as the 
NW length increases, the fundamental natural 
frequency decreases. Fig. 4 demonstrates the 
variation of the normalized fundamental natural 
frequency of the Timoshenko piezoelectric 
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simply-supported NW with voltage for different 

values of  . The figure displays that for various 

values of length-to-thickness ratio, under a specific 
voltage, the fundamental natural frequency 
becomes zero and the buckling occurs. The value 
of this voltage increases as the value of length-to-
thickness ratio increases. 
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Fig. 5. Variation of the normalized fundamental natural 
frequency of Timoshenko simply-supported NW with 

voltage  for different values of  ( . 

 
Fig. 5 displays the variation of the normalized 

fundamental natural frequency of the Timoshenko 
piezoelectric simply-supported NW with voltage 
for different values of the residual surface tension 

. It can be observed that by increasing the value 

of , the stiffness of NW will be increased.  
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Fig. 6. Variation of the normalized fundamental natural 
frequency of Timoshenko and Euler-Bernoulli simply-
supported NWs with length ( . 
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Fig. 7. Variation of the normalized fundamental natural 
frequency of Timoshenko and Euler-Bernoulli simply-
supported NWs with voltage ( . 

 
Figs. 6 and 7 demonstrate the variation of the 

normalized fundamental natural frequency of the 
Timoshenko and Euler-Bernoulli piezoelectric 
simply-supported NWs with length and voltage, 
respectively. These figures show the comparison 
between the two beam models and reveal the 
excellent agreement between them. The difference 
between the frequencies of the Timoshenko and 
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Euler-Bernoulli beam models is negligible and for 
both beam models, in the same voltage, the 
normalized fundamental natural frequency 
becomes zero and the buckling happen. 

 
7. Conclusion 

 
In this paper, the Timoshenko beam model was 

applied for vibration analysis of piezoelectric NWs 
with surface effects. First, the electric-field 
equations were obtained and used to derive the 
nonzero stress tensor components. The governing 
equations of motion and the exact expression of the 
natural frequencies were derived with 
consideration of piezoelectricity and surface 
effects. The normalized natural frequency for the 
first mode of vibration was obtained and utilized to 
illustrate the influence of piezoelectricity for 
Timoshenko NWs. Besides, through the exact 
solution for NWs with simply-supported boundary 
condition, the values of buckling voltages were 
illustrated. Based on the results it can be concluded 
that by increasing the value of the voltage or 
decreasing the length of NW, the fundamental 
natural frequency increases. For a specified value 
of length-to-thickness ratio, the obtained results for 
this beam model were compared with those of the 
Euler–Bernoulli beam. The result showed that the 
fundamental natural frequencies of the Euler–
Bernoulli NWs are close to the Timoshenko NWs 
and the difference between them is insignificant. In 
addition, it can be found that surface effects and 
piezoelectricity can significantly affect the 
frequency of piezoelectric NW. Additionally, the 
obtained results were compared with the existing 
results in the literature and the accuracy of the 
present method was shown. 
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