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Abstract 
This paper is concerned with the surface and small scale effects on 
transverse vibration of a viscoelastic single-layered graphene sheet 
(SLGS) subjected to an in-plane magnetic field. The SLGS is 
surrounded by an elastic medium which is simulated as Visco-
Pasternak foundation. In order to investigate the small scale effects, 
the nonlocal elasticity theory is employed due to its simplicity and 
accuracy. The effect of structural damping of SLGS is taken into 
account based on Kelvin’s model on elastic materials. An analytical 
method is used to obtain the natural frequency of the system. A 
detailed parametric study is conducted to elucidate the effects of the 
surface layers, nonlocal parameter, magnetic field, Visco-Pasternak 
elastic medium, viscoelastic structural damping coefficient and aspect 
ratio of graphene sheet. The findings indicate that enhancing the 
magnetic field and the density of surface layers leads to an increase in 
the natural frequency of SLGS. 
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1. Introduction 
   It is commonly believed in the scientific 
community that nanotechnology will spark a series 
of industrial revolutions in the following decades. 
In recent years, nano-structur  al carbon materials 
have received considerable interest by scientific 
communities due to their superior properties. 
Among carbon based nanomaterials, SLGSs have 
attracted many researchers for their strong 
mechanical strength (Young’s modulus=1.0 TPa), 

large thermal conductivity (thermal 
conductivity=3000 W/km), excellent electric 
conductivity (electric conductivity up to 6000 
S/cm), high surface area and unusual optical 
properties. [1,2]. These superior properties have 
made SLGSs promising candidates in many 
applications such as nanosensors, nanoelectronics, 
nanocomposites, batteries, nanooscillators, 
nanoactuators, nanoresonators, nano-
optomechanical systems, supercapicitores, fuel 
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cells, solar cells, and hydrogen storage [3,4]. The 
application of the SLGS like mass sensor was 
investigated by Sakhaee-Pour et al. [5]. Recently, 
the vibration characteristics of the graphene sheets 
(GSs) have attracted attention of many researchers 
for their superior vibrational behaviors. For 
instance Ansari et al. [6] studied the vibrational 
behaviors of SLGS based on the first order shear 
deformation theory (FSDT) and solved the 
differential equations by means of generalized 
differential quadrature method (GDQM) for various 
boundary conditions. And Pradhan and Kumar [7] 
investigated vibration analysis of embedded 
orthotropic GSs. 
   The classical (local) theory assumes that the 
stress at a defined point depends uniquely on the 
strain at the same point. Hence, it is a scale 
independent theory and cannot handle size-
dependent manner. There are theories that show the 
size-dependent behavior such as nonlocal, couple 
stress, modified couple stress and strain gradient. 
Many studies have been carried out on the basis of 
the nonlocal elasticity theory which was initiated in 
the papers byEringen [8]. He regarded the stress 
state at a given point as a function of the strain 
states of all points in the body. Pradhan and Murmu 
[9] studied the small scale effect on the buckling of 
embedded SLGS based on nonlocal plate theory. 
They found that the buckling loads of SLGS are 
strongly dependent on the small scale coefficients. 
In another attempt, small-scale effects on the free 
in-plane vibration of nanoplates were investigated 
by Murmu and Pradhan [10], who employed 
nonlocal continuum mechanics. They showed that 
the nonlocal effects are quite significant in in-plane 
vibration studies and cannot be neglected in the 
continuum model of graphene sheets. Nonlocal 
plate model for nonlinear vibration of SLGSs in 
thermal environment was presented by Shena et al. 

[11]. Their results indicated that with properly 
selected small scale parameters and material 
properties, the nonlocal plate model can provide a 
remarkably accurate prediction of the graphene 
sheet behavior under nonlinear vibration in thermal 
environments. 
   The surface-to-bulk energy ratio increasesin 
nanoscale problems.Therefore, surface effects must 
be taken into account while they can be disregarded 
in macroscopic structural problems. Higher-order 
surface stress effects on buckling of nanowires 
under uniaxial compression were studied by Chiu 
and Chen [12]. They described the mathematical 
framework of surface/interface stresses by 
generalized Young-Laplace equations based on the 
membrane theory. Using a generalized form of 
Kirchhoff plate model, Assadi [13] presented an 
analytical method to study the size-dependent 
forced vibration of rectangular nanoplates under 
general external loadings. The effect of surface-
stress on the concentration of stress at nanoscale 
surface flaws was investigated by Gill [14]. And Lu 
et al. [15] proposed a general thin plate theory 
including surface effects. They derived the 
governing equations of Kirchhoff and Mindlin plate 
models including surface effects and provided some 
numerical examples to verify the validation of the 
theory. They also concluded that size effects tend to 
be significant when the thickness of the plate-like 
thin film structures approach the intrinsic length 
scale of the materials. 
   The surrounded elastic medium of SLGS can be 
assumed as linear (Winkler and Pasternak) or 
nonlinear elastic medium. Chien et al. [16] 
investigated nonlinear vibration of laminated plate 
resting on a nonlinear elastic medium. Using 
nonlocal elasticity theory of orthotropic plate 
Ghorbanpour Arani et al. [17] carried out vibration 
analysis of the coupled system of doubled-layered 
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graphene sheets (CS-DLGSs) embedded in a Visco-
Pasternak foundation. The two DLGSs were 
coupled by an enclosing viscoelastic medium which 
is simulated as a Visco-Pasternak foundation. 
Vibration characteristics of a simple supported 
viscoelastic nanoplate were studied by 
Pouresmaeeli et al. [18] using nonlocal plate theory 
and including the effect of viscoelastic foundation. 
Their results showed that the frequency 
significantly decreases with an increase in the 
damping coefficient of foundation. 
   Since the mechanical behaviors of nanostructures 
such as nanotubes and nanoplates become 
significant in designing many nano-electro-
mechanical devices, nanosensors and 
nanoactuators, a large amount of studies were 
conducted on the vibration, instability and wave 
propagation characteristics of such structures. 
Wang et al. [19] studied the impact of the 
longitudinal magnetic field on wave propagation in 
carbon nanotubes embedded in the elastic matrix. 
The effect of an in-plane magnetic field on the 
transverse vibration of a magnetically sensitive 
SLGS using equivalent continuum nonlocal elastic 
plate theory was examined by Murmu et al. [20]. 
They showed that the in-plane field increases the 
natural frequencies of the SLGS. Moreover, 
nonlocal effects are dampened by the in-plane 
magnetic field exerted on SLGS. 
However, to the best of author’s knowledge no 
report has been found in the literature on the 
vibration analysis of a viscoelastic SLGS focusing 
on surface effects. Motivated by these 
considerations, we aim to study the surface effects 
on the vibration characteristics of a viscoelastic 
SLGS embedded on Visco-Pasternak elastic 
foundation based on nonlocal elasticity theory. 
Herein the SLGS is subjected to the magnetic field 
in x-directions. An analytical method is employed 

to obtain the frequency of the system. An 
investigation will be made into the effect of small 
scale parameters, surface layers, aspect ratio of 
thickness to length, magnetic field, Visco-Pasternak 
elastic medium and viscoelastic structural damping 
coefficient of graphene sheet. Moreover, a 
comparison between the findings of the present 
study and the results found in the literature show 
the accuracy of the current research. 
 
2. BASIC EQUATIONS 
 2.1 Preliminaries 
   The coordinate system of the middle surface of 
plate are x, y and z that are taken for the length, 
width and thickness of the graphene sheet, 
respectively (See Fig. 1). Consider a SLGS as 
depicted in Fig. 1 which shows the geometrical 

parameters of lengthb , width l  and thickness h . 
The SLGS is rested on an elastic medium which is 
simulated by Visco-Pasternak foundation and it is 
also subjected to a magnetic field.  

 
Fig. 1. Schematic of an embedded SLGS embedded on 
Visco-Pasternak foundation. 

 
As is well known, this foundation model is both 

capable of transverse shear loads ( gk ), normal 

loads ( wk ) and also damping structural coefficient 
(c ). According to classical laminated plate theory 
(CLPT) which is used in the present formulation, 
the displacements of any arbitrary point of the 
graphene sheet along x, y and z directions (u , v  
andw ) can be expressed as [17]: 
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where 0w  is the displacement of the mid surface of 

the plate along z direction. The Von Karman-type 
nonlinear strain relations are used here which can 
be expressed as: 
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2.2. Magnetic field 
   The governing electrodynamics Maxwell 
equations for a perfectly conducting elastic body 
are given by [21]: 
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where J


 is the electric current density vector, 
e perturbation of electric field vector, 

h


perturbation of magnetic field vector, 

U


displacement vector and   is the magnetic 

permeability. 

Imposing a magnetic field vector in longitudinal 

direction  ,0,0xH H


, assuming  0 0 0, ,U u v w
   and 

using Eqs. (3) yields: 
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Therefore the Lorentz force can be obtained as: 
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2.3. Nonlocal elasticity theory 
   Based on Eringen’s nonlocal elasticity, the stress 
tensor is not only affected from its own reference 
point but it also receives pressure from all other 
points of the body. The nonlocal constitutive 
behavior can be given as follows [20]: 

( ) ( , ) ( ),nl l
ij ijv

x x x dV x x V         (6)  

where nl
ij  and l

ij  are, the nonlocal stress tensor 

and local stress tensors, respectively; ( , )x x  is 

the nonlocal modulus; x x  is the Euclidean 

distance, and 0 /e a l   in which l  is the external 

characteristic length, 0e denotes constant 

appropriate to each material, and a  is an internal 
characteristic length of the material. Consequently, 

0e a is a constant parameter which is obtained with 

molecular dynamics, experimental results, 
experimental studies and molecular structure 
mechanics. The constitutive equation of the 
nonlocal elasticity can be written as [19]: 

 21 ,nl l      (7) 

where the parameter 2
0( )e a  denotes the small 

scale effect on the response of structures in 
nanosize, and 2  is the Laplacian operator in the 
above equation and can be expressed 
as 2 2 2 2 2x y       . Also nl  and l  are 

nonlocal and local stresses, respectively. 
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Employing the energy method and Hamilton’s 
principle yields the following nonlocal linear 
motion equation for transverse vibration of the 
SLGS as: 
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2.4. Surface effects 
   In order to study the effect of surface layer in 
nanostructure mechanical behaviors, Gurtin and 
Murdoch [22, 23] presented a model in which the 
surface layer is assumed as a mathematical layer 
with zero thickness and different material 
properties. According to this theory, the following 
equation can be written for surface-strain relation 
[24]: 
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where s  and s  are the Lame constants of surface 

layer; s is the residual stress under unconstrained 
conditions;  is the Kronecker delta. Using Eq. 

(10) the following surface equations are given: 
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Using Eqs. (9) and (11) yields the moment 

resultants of the surface layers  s s s
x y xyM M M  

as: 
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   According to Gurtin-Murdoch model andunlike 
classical plate theories, zz is not equal to zero on 

the upper and lower surfaces. Indeed, the stress 
component zz  varies linearly along the graphene 

sheet thickness and satisfies the balance condition 
on the surfaces which can be expressed as the 
following relation: 
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   Considering Eq. (13) the following stress 
component in transverse direction can be obtained 
as: 
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in which s  is the pass density of the surface layer. 

On the other hand, the local stress strain relation for  
the bulk material (graphene sheet) can be written as 
follows: 
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where   and   are the Lame constants, ij and ij  

are the local stress and strain components, in which: 
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where E  and   are the Young’s modulus and 
Poisson’s ratio, respectively. 
Substituting Eqs. (17) into Eq. (9) and using Eq. 
(14) yields the moment resultants of the bulk 

material  b b b
x y xyM M M  as: 
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2.5. Viscoelastic property of SLGS 

   Based on Kelvin’s model on elastic materials, the 
Young’s modulus is replaced with  1E g t    

[19], in which g  is the viscoelastic structural 

damping coefficient. 
   Substituting Eqs. (12) and (18) into Eq. (8) and 
using Kelvin’s model for viscoelastic property of 
SLGS yields the following motion equation: 
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3. SOLUTION METHOD 
   In this section, an analytical method is used to 
solve the motion equation. For this purpose, the 
Navier method for simply supported graphene sheet 
can be used as follows: 
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where mnA  is the amplitude,  is the (Fundamental) 

natural frequency, and m and n  are half wave 
numbers. 
Defining dimensionless parameters as: 
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 (21) 

Placing Eq. (20) in Eq. (19) and using Eqs. (21), the 
dimensionless motion equation for transverse 
vibration of an embedded viscoelastic SLGS 
subjected to a longitudinal magnetic field can be 
obtained as: 
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(22) 

in which m m  and n n  . The real part of 

frequency corresponds to the system damping, and 
the imaginary part represents the system natural 
frequencies. 

 

4. NUMERICAL RESULTS AND 
DESCUSSION 

   The following section discusses in detail the 
effect of surface layers, nonlocal parameter, length 
of graphene sheet, elastic medium, mode numbers, 
magnetic field and aspect ratio of the SLGS  
The mechanical and electrical characteristics of a 
SLGS, the surrounding elastic medium and the 
nonlocal parameters have been employed [16, 17]. 
Fig. 2 depicts the dimensionless natural frequency 
versus dimensionless small scale parameter for 
different values of damper modulus parameter of 
the elastic medium. It is seen that the dimensionless 
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natural frequency of SLGS decreases as the damper 
modulus parameter of the elastic medium increases. 
Also it can be observed that the dimensionless 
natural frequency is decreased with an increase in 
the small scale parameter until it reaches the zero 
value where instability occurs in the system. 
Therefore, it can be concluded that the system loses 
its stability at higher small scale parameter values. 
This is because increasing the nonlocal parameter 
implies decreasing interaction force between 
graphene sheet atoms, and that leads to a softer 
structure. Furthermore, the small scale effects on 
the dimensionless natural frequency become more 
distinguished at higher damper modulus of elastic 
medium values. 
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Fig. 2. Effect of damper modulus parameter of the 
elastic medium on the dimensionless natural 
frequency with respect to the dimensionless small 
scale parameter. 

 
The effects of the magnetic field on the 
dimensionless natural frequency with respect to the 
aspect ratio of thickness to length are illustrated in 
Fig. 3 with 114C   and 1ne  . As can be seen, the 

dimensionless natural frequency decreases as the 
aspect ratio increases since the system becomes 
unstable at zero dimensionless natural frequency 
value. It is also seen that the magnetic field plays an 
important role in vibration characteristics of SLGS. 

Enhancing the magnetic field increases the natural 
frequency. Hence, it is possible to improve the 
stability of the system by enhancing the magnetic 
field. 
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Fig. 3. Effect of the magnetic field on the 
dimensionless natural frequency with respect to the 
aspect ratio. 

 
   Fig. 4 demonstrates the effect of the surface 
density on the dimensionless natural frequency with 
respect to the aspect ratio of the thickness to length. 
It can be found that the natural frequency of the 
system increases at a decreasing rate with an 
increase in the density of surface layers. Also the 
variations of dimensionless natural frequency 
become more prominent at lower surface density 
values. It is worth mentioning that an increase in 
the thickness to length ratio of the SLGS leads to 
lower natural frequencies. In other words, the 
SLGS is more stable at lower thickness to length 
ratio values. 
   The variation of dimensionless natural frequency 
versus dimensionless small scale parameter for 
different viscoelastic structural damping 
coefficients is depicted in Fig. 5 with 10C  , 

10MF  , 286wK   and 2.86gK  . 
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Fig. 4. Effect of the surface density on the 
dimensionless natural frequency with respect to the 
aspect ratio. 
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Fig. 5. Dimensionless natural frequency versus 
dimensionless small scale parameter for different 
viscoelastic structural damping coefficients. 

 
   It can be found that increasing the viscoelastic 
structural damping coefficient of SLGS lowers the 
dimensionless natural frequency. This is because 
increasing the structural damping coefficient yields 
looser structure. It is also seen that the effect of 
viscoelastic structural damping coefficient becomes 
more visible at lower small scale parameters. 
To realize the effect of the Winkler and Pasternak 
coefficients of elastic medium, Fig. 6 shows how 
dimensionless natural frequency changes with 
respect to the dimensionless Winkler modulus for 

different values of Pasternak coefficient 
with 10C  , 10MF  , 1ne  . The findings indicate 

that an increase in the dimensionless Winkler ( wK ) 

and Pasternak ( gK ) coefficients increases the 

dimensionless natural frequency of the system. It is 
due to the fact that increasing wK  and gK  

increases the structure stiffness and hence the 
stability of SLGS. 
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Fig. 6. Effects of Winkler and Pasternak coefficients 
on the dimensionless natural frequency. 

5. Conclusion 

In this study, transverse vibration characteristics of 
a SLGS are examined using nonlocal elasticity 
theory. The graphene sheet is subjected to a 
longitudinal magnetic field and also embedded on a 
Visco-Pasternak elastic medium. By considering 
surface effects, the motion equation of SLGS is 
derived. An analytical method is employed to 
obtain the damping and natural frequencies so that 
the effects of small scale parameter, elastic 
medium, aspect ratio of thickness to length, 
magnetic field, surface layers and viscoelastic 
structural damping coefficient are studied in detail. 
The following conclusions may be made from the 
findings: 
The natural frequency of SLGS decreases as the 
small scale parameter increases. Frequency 
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decreases the viscoelastic structural damping 
coefficient and damper modulus parameter of 
elastic medium increases. The stiffness and hence 
the frequency of the SLGS increases with an 
increase in Winkler and Pasternak coefficients. 
Natural frequency and stability of the system 
increases as the magnetic field and density of 
surface layers increase. 
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