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Abstract 
Ultra-short pulse is a promising technology for achieving ultra-
high data rate transmission which is required to follow the 
increased demand of data transport over an optical 
communication system. Therefore, the propagation of such type 
of pulses and the effects that it may suffer during its 
transmission through an optical waveguide has received a great 
deal of attention in the recent years. We provide an overview of 
recent theoretical developments in a numerical modeling of 
Maxwell's equations to analyze the propagation of short laser 
pulses in photonic structures. The process of short light pulse 
propagation through 2D periodic and quasi-periodic photonic 
structures is simulated based on Finite-Difference Time-Domain 
calculations of Maxwell’s equations. 
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1. Introduction 
   The finite-difference time-domain method 
(FDTD) is a very powerful technique for numerical 
analysis of Maxwell’s equations [1]. Due to its 
accuracy, the FDTD method is widely used for 
simulation of light propagation in optical 
waveguides, scattering media or photonic crystals 
[2, 3].  
   Although the first studies of optical coupling 
processes in waveguide arrays were performed in 
early 1960’s [4, 5], it was only recently that high-
contrast dielectric elements became available 

which made possible creation of photonic crystal 
structures [6]. Recently, discretized light 
propagation in photonic lattices has attracted a lot 
of interest [7-11]. 

In this work, we have used the FDTD method to 
analyze the processes of light propagation in 
dielectric media with different microstructures 
embedded in them. In particular, the tasks of the 
light pulses propagation in two-dimensional (2D) 
coupled-waveguides, periodic and quasi-periodic 
structures have been examined numerically. The 
cases of different polarization state of 
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electromagnetic waves (TE-, and TM-modes) have 
been studied, and the space distributions of the 
amplitudes for electric and magnetic vectors, as 
well as for the energy density of the 
electromagnetic field have been calculated. The 
influence of the parameters of the light pulses 
(wavelength, duration of pulse, transverse size of 
the beam) and the parameters of the medium (the 
values of refractive index of dielectric layers, its 
geometrical size and mutual arrangement) on 
transmission characteristics of the electromagnetic 
field have been analyzed. As a result, the main 
features of energy transition modes between two 
coupled waveguides (“pendulum mode”), and 
“discrete diffraction” in the system of several 
coupled waveguides have been studied thoroughly. 
In addition, the features of the short light pulses 
propagation in quasi-periodic photonic structures 
with a labyrinthine distribution of the refractive 
index have been analyzed based on the previously 
developed technique [12].  
 
2. Theoretical model Light propagation: 
Finite-difference time-domain (FDTD) 
method 
   The finite-difference time-domain technique or 
FDTD-method is a widely used technique that 
numerically solves Maxwell’s equations with a high 
accuracy, entailing a considerable computing time [1]. 
This method allows tracking the spatial periodic 
evolution of the electromagnetic field inside of the 
environment with an arbitrary distribution of the 
dielectric conductivity. In this section, we show that 
with the using of FDTD method we can analyze the 
propagation of short laser pulses in periodic and 
quasi-periodic structures.  
Let’s consider Maxwell’s equations for an optical 
medium 
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These equations can be decomposed into the three 
coordinate components to obtain a set of six 
differential equations: 
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   From now on, a 2D configuration will be 
considered, in such a way that the electrical 
permittivity is reduced to ε = ε (x, y). With this 
situation, the differential equations for TE mode are:  
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   The finite difference approximation of equation sets 
(9) – (11) implies a set of equations that can be solved 
explicitly [2]. According to FDTD theory, these 
differential functions are segregated in both space and 
time, so that they can be calculated as: 
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In these equations x  and y  are the spatial mesh 
steps along the coordinates x and y, respectively, t  is 
the time step. The following separation for the desired 
functions is used here:  
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On the other hand, the equations for TM mode are: 
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   Again, after separation of these functions according 
to FDTD algorithm, we have: 
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3. Results and discussion  

Numerical modeling of the problems for light 
beam propagation in the media with 
microstructures of refractive index has been 
performed for the following cases: 1) propagation 
of light pulses in the system of two coupled 
waveguides, 2) propagation of radiation in the 
system of N coupled waveguides, and 3) 
propagation of radiation in photonic structures with 
labyrinthine distribution of refractive index. In the 
numeric modeling, it is assumed that the source of 
the electromagnetic field in the form of a quasi-
monochromatic wave with time pulse and spatial 
profile of Gaussian-like shape is started from the 
left border of the computation domain. The time 
evolution of spatial distribution of components of 
electric and magnetic fields, as well as the energy 
density has been calculated, and the results are 
presented in Figs. 1 – 3. 
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The mode of energy coupling of two closely 
positioned planar waveguides is demonstrated in 
Fig. 1. This task has been considered for the case, 
when the wavelength of incident electromagnetic 
wave λ = 1μm, pulse duration τp =20 fs, diameter 
of waveguides d1 = d2 = 1μm, the distance between 
waveguides d0 = 1μm. Planar waveguides are 
formed by the medium with refractive index n2=1.5 
(Fig. 1, a, dark area) embedded into the medium 
with refractive index n1=1.45 (white area). The TE-
polarization of radiation has been considered. 
Aswe can see, initially the light beam is focused to 
the bottom waveguide, and propagates along it 
(Fig. 1, b). After passing so-called coupling 
distance, the energy of the light pulse is almost 
completely transferred to the upper waveguide 
(Fig. 1, c) due to spatial intersection of transverse 
waveguide modes. The reverse process is taking 
place in doubled coupling distance (Fig. 1, d) 
providing the realization of “pendulum mode” for 
energy exchange between the two waveguides. 

The typical results of numerical modeling for 
the mode of “discrete diffraction” in a system of N 
coupled waveguides are shown in Fig. 2 for TE-
polarization of incident optical radiation. The 
wavelength of incident electromagnetic wave 
λ = 1μm, pulse duration τp =20 fs. The system of 

Planar waveguides (Fig. 2, a) are formed by the 
mediums with refractive index n1=1.45 and n2=1.5. 
The width of each waveguides d1 = 1μm, and the 
distance between waveguides are d0 = 1μm. 
Initially localized in the central waveguide 
(Fig. 2, b) the light pulse then is divided into two 
spatially symmetrical pulses localized in neighbor 
waveguides (Fig. 2, c). Next division of pulses  

 
 
 
 

 
(Fig. 2, d) leads to energy transfer to the outer 

waveguides, while the coherent elimination of light 
pulse in the central waveguide takes place.  
 

The analysis results of the quasi-monochromatic 
light pulses propagation kinetics in labyrinthine 
like photonic structures are presented in Fig. 3. The 
labyrinthine structures (Fig. 3, a) are characterized 
by the presence of short-distance and the absenceof 
long-distance order. Therefore, these structures can 
be considered as transient structures between 
photonic crystals, complex-structured waveguides,  

Fig. 1.Two coupled waveguides structure (a), and 
spatial distribution of the energy density of the 
electromagnetic field (b – d). t = 126 fs (b), 420 fs 
(c), 1000 fs (d). λ = 1μm, τp =20 fs, 
n1 = 1.45,n2 = 1.5.  
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and disordered systems. Based on the numerical 
experiments performed, it is shown that 
thedistribution of the energy density of the 
electromagnetic field is characterized by a complex 
branching structure (Fig. 3, b – e). The structures’ 
application possibilities are analyzed with 
reference to increase the optical information 
storage time and localization of the 
electromagnetic field energy in the photonic 
structure [12]. 

 

4. Conclusion  
   This article provides an overview of theoretical 
analysis that has been performed in order to 
evaluate the light propagation in 2D photonic 
structures. We show that the FDTD method is well 
suited for studying of the pulse propagation in 2D 
photonic structures, and a very useful tool for 
investigating nonlinear pulse propagation and its 
interaction with the media.  
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