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Abstract 
The BFT approach is used to formulate the electronic states in 
graphene through a non-commutative space in the presence of a 
constant magnetic field B for the first time. In this regard, we 
introduce a second class of constrained system, which is not gauge 
symmetric but by applying BFT method and extending phase space, 
the second class constraints  converts  to the first class constraints so 
the system becomes a gauge symmetric.  
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1. Introduction  

Graphene is magical material of the 21th century 
and basically it is a flat monolayer of carbon 
atoms tightly packed into a two-dimensional 
(2D) honeycomb lattice [1]. 
   From the electronic point of view, it is either a 
zero-overlap semimetal or a zero-gap 
semiconductor, where the conduction and the 
valence bands are no longer separated by an 
energy gap [2]. On the other hand, electrons in 
graphene behave like photons or other ultra-
relativistic particles (such as neutrinos), with an 

energy-independent velocity Fv that is 

approximately 300 times smaller than the speed 
of light [3].  
   Formally, their quantum-mechanical behavior 
is no longer described in terms of a (non-
relativistic) Schrödinger equation and the Dirac 
equation must be used for the massless neutrinos 
instead [1, 3, 4]. However, the connection to 
relativistic physics is even deeper than this 
because the Hamiltonian for the particles near 
the K (or Dirac points) that the condition band 
and the valence band are touched may be written 

as  where  is the momentum 

of the particles and σ  are Pauli spin matrices 
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acting on the honeycomb sub-lattice degrees of 
freedom [3]. This is the Dirac equation for 
massless relativistic particles with linear energy 
spectrum in 2D. Many of the interesting 
electronic properties in graphene are resulted 
from this dispersion relation [5]. 
   When electrons are confined in two-
dimensional (2D) systems, at low temperatures 
and inserted strong magnetic field perpendicular, 
the quantum Hall effects (QHE) can be observed 
that is a manifestation of quantum mechanically 
enhanced transport phenomena on the Landau 
electronic levels. The early indication for the 
quantum effects on transport phenomena of the 
2D electrons inside a strong magnetic field was 
found by Shubnikov and De Haas in 1930.  
   They found that above a threshold field, the 
longitudinal resistivity oscillates as a function of 
the field [2, 6]. In the QHE, the Hall resistance is  

, where ν  is filling factors and could 

be an  integer or rationale number  
respectively.However, the quantization condition 
in graphene is distinctively different and in 
particular, very unusual half-integer quantum 
Hall effects were discovered. It provides an 
unambiguous evidence of the existence of Dirac 
fermions so graphene is strongly peculiar from 
the other conventional 2D electronic systems 
(containing carriers with finite mass) [1, 4]. 
   Moreover, the quantization of dynamic 
systems in classical phase space were 
implemented by Weyl –Wigner –Groenewold –
Moyal method. The WWGM method works well 
for observables possessing a classical limit. The 
method shows in a non-commutative space, the 
coordinate operators satisfies the following 
commutation relation 

,x x iµ ν µνθ  =   

Where µνθ is the anti-symmetric matric and the 
ordinary products are replaced by the star ones 
[7, 8]:  

 

 

Corresponding to the quantum commutators one 
considers the Moyal bracket of two observables 

(P,Q) and g(P,Q)f  is: 

  
 

 

In addition the Moyal bracket of the matrices 
(P, )abM Q  and (P, )abN Q  can be defined as:  

 

),(*),(

),(*),()*)],(),,(([

QPcbMQPacN

QPcbNQPacMabQPNQPM

−

=

 

   To take into account this fact we define the 
“semi classical” bracket 

{ }

{ } { }

(P, ), (P, ) [ , ]

1 1(P, ), (P, ) (P, Q), N(P, Q)
2 2

C

iM Q N Q M N

M Q N Q M

−
= +

−

h  

   Where the first term on the right hand side is 
the ordinary commutator of the matrices and the 
last two terms are Poisson brackets [9]. 
   The inserted constraints are specified in 
classification of the gauge theories and in this 
regard, a quantity such that its Poisson brackets 
with all the constraints are weakly vanish, is first 
class constraint (FCC) otherwise it is second 
class constraint (SCC). Systems that have FCC, 
called gauge theory [10]. 
   Appearance of SCC, breaks the gauge 
symmetry, and for quantization of the SCC 
systems we must use Dirac brackets instead of 
Poisson brackets. However this procedure may 
implies some difficulties such as factor ordering. 
The BFT approach introduced by Batalin, 
Fradkin and Batalin – Tyutin gives an alternative 
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method for quantization of the SCC systems [11, 
12]. 
   This method is based on extending the phase 
space to include a set of new variables and then 
writing the constraints, similar to the physical 
quantities, as a power series in terms of these 
added variables [13-15].  
   Here, we investigate moving of an electron in 
a 2D graphene system as a SCC system. So 
according to the BFT method, we convert the 
SCC system to the FCC and introducing a new 
gauged system. 
   In section 2 we use the Lagrangian and 
structure of constraints for the graphene systems 
in the non-commutative space. In section 3 we 
study moving of an electron in 2D space then in 
section 4 we briefly review BFT method. In 
section 5 we apply the BFT approach to the 
graphene system and finally the section 6 is 
devoted to conclusion. 

 
2. Graphene Systems in Non-commutative  
Space 

We consider a 2D non-commutative space, 
the first order matrix Lagrangian adequate to 
formulate spin dynamics in this space, is [7, 9] 

0

(
2

)

( , )
2

A r r p

H

p

r

pr

p

L
α

αβ
α α

α α
β

θ
ρ

 
+ + 

 

 = −  
−

&
&

h
I I

 

 
(1) 

 

denotesthe unit matrix possessing the 
same dimension with the matrix valued gauge 

field Aα . We denoted the coupling 

constants ρ . Although (1) isclassical,  is 

present to furnish the constant and anti-
symmetric non-commutativity parameter 

αβθ with the dimension ( length)
2
. The 

canonical 

momenta ,I r p
L LP P P
r p

α α

α α

 ∂ ∂
= = = ∂ ∂ & &

 

corresponding to the coordinates (r , )IQ pα α=  

yield the dynamical constraints. [8] 

1 1
2rP p Aα α α αρψ  = − 

 
−

rr
I  (2)  

2 1
2p r pPα α

α β

β
α θψ  = + +

  h

r
I  (3) 

They satisfy the semi classical relations  

{ }1 1,
C

Fα β
αβψ ψ ρ=  (4) 

{ }2 2,
C

αβα β θ
ψ ψ =

h
 (5) 

{ }1 2,
C

α β
αβψ ψ δ= −  (6) 

,
A A iF A A
r r
β α

αβ α β
α β

ρ∂ ∂  = − −  ∂ ∂ h

 

 
(7)  

   Where Fαβ  is the field strength and αβδ  is the 

Keroneker delta. We can introducing the semi-
classical Dirac brackets  
{ }

{ } { } {1

,

, , ,
CD

Z
zz zC C

M N

M N M C Nψ ψ−
′ ′

=

−

 

 
(8) 

 

Where 1C −  is the inverse of { },z z z z

C
Cα β α βψ ψ′ ′= . 

   We can extend the canonical quantization rules 

to the matrix observation by { } 1, ,
CD i

→   
h

, 

and with distinguish the matrix commutators and 
relations (4-6) and quantum commutation 
relations, can introducing generalized algebra: 

ˆ ˆ, qr r iα β αβθ  =   (9) 

2ˆ ˆ, ( )
q

p p i F i F Fα β αβ αβρ ρ θ  = −  h  (10) 

ˆ ˆ, ( )r p i i Fα β αβ αβδ ρ θ  = −  h  (11) 

 
Note that we keep first order θ and  if 0θ = , 
then relations (9-11) come back commutative 
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space. A realization of the generalized algebra 
(9–11) and a Hamiltonian 0 ( , )H p r  should be 

provided.  

ˆ
2

p D F Dα βγ
α αβ γ

ρ θ= −
h

 (12) 

1ˆ
2

r r Dα β
α αβθ= −

h
 (13) 

D i A
rα αα ρ∂

= − −
∂

h  (14) 

 
(12-14) satisfy the algebra (9-11). To illustrate 
the method let the initial 

Hamiltonianbe
2

0 ( )
2
pH p
m

= . Substituting p  

with the quantum operator (12) one obtains 
theθ –deformed Hamiltonian 

0

2

ˆˆ( )

1
2 2

n cH p H

D F D
m

β γ
α α β γ

ρ θ

≡ =

 − 
 h

 
 
(15) 

 
 

3. Electron on 2D plane 
Now, if we consider an electron moving on 

the two-dimensional plane ( , )ir x y=  in 

graphene in  the presence of the uniform external 
in-plane electric field E and the uniform external 
perpendicular magnetic field B, and the field 

strength i j i jF Bε= and constant e
c

ρ = − . 

ˆ ˆ, qx y i θ=    (16)  

ˆ ˆ, 1i j q ij
ieB eBp p

c c
θ θ ε   = − −    h

  
(17)  

ˆ ˆ, 1i j q i j
e Br p i

c
θ δ   = −    

h
h

  
(18)  

Choosing the electric field to lie in the 
direction of the x-axis, and by choosing 

symmetric gauge
2i i j j
eBA r

c
ε= , the Hamiltonian 

in non-commutative space is taken as:  

2

2

1 ˆ ˆ
2

1 ˆ
2 2

nc iH p eEx

D F D eEx
m

β γ
α α β γ

ρ θ

= +

 = − + 
 

r

h

 
 
 
(19) 

(1)ˆ 1
2 2

j
i i i j

eB eBp p r
c c
θ ε = − − 

 h
 (20) 

(1 )ˆ 1
4 2

j
i i i j

e Br r p
c c
θ θ ε = − − 

 h
 (21) 

By plugging (20) and (21) into (19) one 
obtains the Hamiltonian [8,9]. 

( )
21 1 2

2 2

(1 )
2

j
nc i i j

y

eBH p r
m c

eEeE x p

κ ε

θκ

 = − −  

+ − −
h

 
 

(22) 

Where we defined and  . 

 
4. Review of the BFT Method 

We consider a SCC system described by 
Hamiltonian 0H  in phase space with coordinate 

( , )i
jq p that 1,2,...,i k= . Assume we are a given 

a set of SCC , 1,2,...,mα αΩ = satisfying the 

algebra:  

{ },α β α β∆ = Ω Ω  (23) 

   Where { },  is the Poisson bracket and αβ∆  is 

an invariant matrix. To convert this second class 
system into a gauge system, i.e. a first class 
system, one should extend the phase space by 
introducing the same number of auxiliary 
variables as that of  SCC. We denote variables 
by αη  with following algebra: 

{ },α β αβη η ω=  (24) 

Where α βω  is an anti-symmetric matrix which 
we assume it to be constant. The FCC in the 
extended phase space ( , ) ( )q p η⊕  are defined as  

( , , ) 1, 2,...,q p mα ατ τ η α= =  (25) 

With the boundary conditions  
( , ,0) ( , )q p q pα ατ = Ω  (26) 
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In the Abelian BFT embedding method one 
demands that these extended constraints are 
strongly involutes: 

{ }, 0α βτ τ =  (27)  

The solution of the above equation can be 
obtained by considering  as: 

( )

0

n

n
α ατ τ

∞

=

= ∑  
 

(28) 

Where ( )n
ατ  is order n with respect to αη  s. 

according to the boundary condition (26) we 
have 

(0)
α ατ = Ω  (29) 

Substituting (28) into (27), lead to a set of 
recursive relation. Vanishing the term 
independent ofη  gives:  

{ } { }(0) (0) (1) (1)

( )
, , 0α β α β η

τ τ τ τ+ =  (30) 

And vanishing the term of order n with 
respect  to αη ’s for 1n ≥ gives  

{ }(1) (n 1) ( )
[ ] ( )

, 0 1nB nα β αβη
τ τ + + = ≥

 

(31) 

   Where:  

{ }( ) (0) (1)
[ ],nBαβ α βτ τ≡   

(32)  

{ }

{ }

( ) (n m) (m)
[ ]

0

2
(n m) (m 2)

0 ( )

1 ,
2

, 2

n
n

m
n

m

B B

n

αβ αβ α β

α β
η

τ τ

τ τ

−

=

−
− +

=

≡ ≡

+ ≥

∑

∑
 

 
 

(33)  

The suffixη  in the above equation means that 

the Poisson  brackets  must be evaluated with 
respect to η  variable only, otherwise they are 

calculated in the basic ( , )q p . The above equation 

are used iteratively to obtain the correction 

terms ( )nτ . Since (1)τ  is linear with respect to 
η we may write: 

(1 ) ( , )q p β
α α βτ χ η=  (34)  

Substituting  this expression into (30) and using 
(23) and (24) we obtain: 

0γ λ
α β α γ β λχ ω χ∆ + =  (35) 

   This equation contains two unknown 

elements, αβχ  and α βω  .One should at first 

assume a suitable anti-symmetric matrix for 
α βω  and then solve (35) to determine the 

coefficient equation for αβχ . Since αβ∆  and 

α βω  are anti-symmetric matrices, there are 

totally ( 1)
2

m m −  independent equation for αβχ  , 

while the number of α βχ ’s are m2. Therefore 

there existan infinite number of solutions for 

αβχ and we are allowed to choose any solution 

we wish. Using this possibility, αβχ ’s can be 

chosen such that the process of determining the 

correction terms ( )n
ατ terminate at this stage, i.e. 

2τ vanishes. We will come to this point in the 
next section. It can be seen that the general 
solution of (31) is given by [16]. 

( 1) ( )1 1
2

n nB n
n

µ ν ρ
α µν ρ ατ η ω χ+ = − ≥

+
 

(36) 

To construct corresponding Hamiltonian 
 in the extended phase space we 

demand  

( )

0

n

n
H H

∞

=

= ∑% %  (37) 

Where is of order n with respect  

to αη ’s. Such that  

{ }
0( , , 0 ) ( , )

, 0

H q p H q p

Hατ

=

=%
 (38)  

Substituting  from (28) and (37) in (38) gives:  

{ }(1) ( 1) ( ), 0 0n nH G nα αη
τ + + = ≥% (39) 
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Where ( )nGα
as  the generators of the  

are defined as the following  

{ }( 0 ) ( 0 ) ( 0 ),G Hα ατ≡  

 

(40) 

{ } { }
{ }

(1) (1) ( 0 ) ( 0 ) (1)

( 2 ) (1)

, ,

,

G H H

H

α α α

α η

τ τ

τ

≡ +

+

% %

%

 

 
(41) 
 

 

{ }

{ }

{ }

(n) ( ) ( )

0
2

( ) ( 2 )

0 ( )

( 1) (1)

( )

,

,

, 2

n
n m m

m
n

n m m

m

n

G H

H

H n

α α

α
η

α η

τ

τ

τ

−

=

−
− +

=

+

≡

+

+ ≥

∑

∑

%

%

%

 

 
 

(42) 
 
 

It can be shown that the general expression 

for  is: 

( 1) ( )1
1

n nH G
n

α β ν
α β νη ω χ+ = −

+
%  (43) 

This completes the BFT method of 
converting a second class system to a strongly 
involution first class one. As can be seen the 

correction terms ( )n
ατ  and  are derived 

iteratively from (36) and (43). Generally, there is 
no guarantee that the series terminate at some 
definite order.  However, the series will 
terminate if ( )nBαβ  and ( )nGα  vanish for a certain 

order n N= [13-15].  
 

5. Embedding Method on a Graphene 
Model 

In this section we have preform BFT at an 
electron that moving on 2D plan in graphene(see 
section 3). By consider SCC�s (2) and (3) and 
Hamiltonian (22) we use  these  possibilities to 
find a systematic method to truncate infinite 
series encountered in BFT method. We should 

solve the iterative equation for ( )n
ατ and . By 

using (4), one can write∆ -matrix (23) as  
 

0 1 0

0 0 1

1 0 0

0 1 0

eB
c

eB
c

θ

θ

 − 
 
 − − 

∆ =  
 
 
 
 −
 

h

h

 

 
 

 
(44) 

We introduce  SCC in non-commutative 
space  as: 

{ }1 1,
C

Fα β
α βψ ψ ρ=   

{ }2 2,
C

αβα β θ
ψ ψ =

h
 (45) 

{ }1 2,
C

α β
αβψ ψ δ= −   

Where ρ  is constant, F Bα β α βε= , and 
αβδ  is 

keroneker delta and αβθ  is constant and anti-

symmetric matrix .We consider  
11

1 ψΨ ≡ 21
3 ψΨ ≡   

  (46) 
12

2 ψΨ ≡ 22
4 ψΨ ≡   

In   this case ∆   is constant, and it is easily 
that choiceω = −∆ and 1χ = , then solve the 

basic equation (35) .We know that   , thus 
posses 

( 0 )
1 1τ = Ψ ( 0 )

3 3τ = Ψ   
(47)  

( 0 )
2 2τ = Ψ ( 0 )

4 4τ = Ψ   

By this choice we write as: (1) β
α αβτ χ η= , 

and we have 
(1) 1

1τ η= (1) 3
3τ η=   

(48)  
(1) 2
2τ η= (1) 4

4τ η=   
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Since (1)
ατ  is only a function of  η , it can be 

seen for 1n ≥  ,all other ( )nB α β
 vanish, thus 

( )nα α
ατ τ η= + and one can write as:  

1 1
1τ η= Ψ +  

2 2
2τ η= Ψ +  

3 3
3τ η= Ψ +  

4 4
4τ η= Ψ +  

 

 
  

(49) 

That leads to the following finite order 
embedding for the constraints.  

Now, for complete our procedure we should 
also construct the extended Hamiltonian. 
Inserting ω ,∆  and χ into (43), the correction 

terms of Hamiltonian as: 
For  0n = then  

(1) (0) 3 2 (0) 1 4
1 2

(0) 1 4 (0) 3 2
3 4

eB eBH G G
c c

G G

η η η η

θ θη η η η

   = − + +      
   − + + −      

%

h h

 
 

(50) 

(0)Gα Can be derived from (40), and give:  

 
( 0 )

1 (1 )G eE κ= − −  

 

(51) 

(0)
2 0G =  

 

(52) 

( ) ( )(0)
3

1 2
1 2G p A

m α α

κ
κ

− 
 = − −   

 
  

(53) 
 

( ) ( )(0)
4

1 2
1 2

2
eEG p A

m α α

κ θκ
− 

 = − − −  
  h

 

 
(54) 

For 1n =  then  
 

(2) (1) 3 2 (1) 1 4
1 2

(1) 1 4 (0) 3 2
3 4

1 1
2 2

1 1
2 2

eB eBH G G
c c

G G

η η η η

θ θη η η η

   = − + +      
   − + + −      

%

h h

 

 
(55) 

(1)Gα  Can be derived from (41), and give:  

 
( )(1 ) 3 2

1

1 2
2
e BG

c m
κ θ η η

−   = −      h

 

 
(56) 

( )(1) 1 4
2

1 2
2
eBG

c m
κ θη η

−   = − +      h

 

 
(57) 

( )2
(1) 1 4
3

1 2
G

m
κ θη η

 −  = − +       h
  

(58) 

( )2
(1) 3 2
4

1 2
G

m
κ θ η η

 −  = −       h
  

(59) 

For 2n ≥  , (n)Gα  vanish, thus consequently 

. 
In this case one can finally write:  

(1) (2)ncH H H H= + +% %  
 

(60) 

Equations (49) and (60) represent a finite 
order gauge theory in BFT method.  

 
6. Conclusion    

We consider a SCC system described by 
Hamiltonian  for a 2D graphene in non-
commutative space. We know SCC illustrate 
break of gauge symmetry, where Dirac 
quantization encountering with some problems. 

In order to  remove the problems, we use 
BFT approach which  by extension of the phase 
space  and  introducing a series of auxiliary 
fields the SCC converts the  FCC  so the 
ordinary direct gauge quantization methods 
would be applicable. The series of constrains 
and the extended Hamiltonian would have 
infinite terms but by choosing a set of suitable 

parameters ( αβ∆ and αβω ) it is possible to 

achieve a finite order of the BFT method and 
hence to make the constrains conversion. In 
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continue, the extended new Hamiltonian could 
be gauge  quantized routinely. 

Our work describes the graphene in a 2D 
non-commutative plane as a fully gauged 
symmetrical model. 
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