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Abstract 
Using principle of minimum total potential energy approach in 
conjunction with Rayleigh-Ritz method, the electro-thermo-
mechanical axial buckling behavior of piezoelectric polymeric 
cylindrical shell reinforced with double-walled boron-nitride 
nanotube (DWBNNT) is investigated. Coupling between electrical 
and mechanical fields are considered according to a representative 
volume element (RVE)-based micromechanical model. This study 
indicates how buckling resistance of composite cylindrical shell may 
vary by applying thermal and electrical loads. Also, applying the 
reverse voltage or decreasing the temperature, increases the critical 
axial buckling load. This work showed that the piezoelectric BNNT 
enhances on the whole the buckling resistance of the composite 
cylindrical shell. 
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1. Introduction 
BNNTs, discovered in the mid 1990s [1-3], 

apart from similar properties to carbon nanotubes 
(CNTs) such as high chemical stability, excellent 
mechanical properties, and high thermal 
conductivity, offer higher temperature resistance to 
oxidation (>900 °C) [4,5], and piezoelectricity (not 
observed in CNTs). Compared with metallic or 
semiconducting CNTs, a BNNT is an electrical 
insulator with a band gap of ca. 5 eV, and hence 

independent of tube geometry; therefore it is more 
suitable for composite reinforcement than CNTs. 
Composites of BNNTs dispersed in ceramic or 
polymeric matrices have attracted a considerable 
attention in recent years due to their potential 
applications in aeronautic and astronautic 
technology, automobile, electronic and mechanical 
devices, and many other modern industries. 

Haque and Ramasetty [6] developed an 
analytical model to study stress transfer in single-
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walled carbon nanotubes (SWCNTs) reinforced 
polymer matrix composites. Their model can be 
used to predict axial stress and interfacial shear 
stress along the CNT embedded in matrix 
materials. The effects of CNT aspect ratio, CNT 
volume fraction and matrix modulus on axial stress 
and interfacial shear stress were also considered by 
[6] who compared their results of analytical model 
with those obtained from finite element analysis. 
Ghorbanpour Arani et al. [7] investigated the 
buckling analysis of laminated composite plates 
reinforced by SWCNTs using an analytical 
approach as well as the finite element method. 
Their developed model is based on the classical 
laminated plate theory (CLPT) and the third-order 
shear deformation theory for moderately thick 
laminated plates. They showed that agglomeration 
of CNTs have significant influence on the buckling 
load and properties of CNT reinforced composite. 
Odegard et al. [8] presented a technique for 
developing constitutive models for polymer 
composite systems reinforced with SWCNT. The 
modeling technique took into account the discrete 
nature of the atomic interactions at the nanometer 
length scale and the interfacial characteristics of 
the nanotube and the surrounding polymer matrix. 
Vodenitcharova and Zhang [9] studied the pure 
bending and bending-induced local buckling of a 
nanocomposite beam reinforced by a SWCNT. 
They found that in thicker matrix layers the SWNT 
buckles locally at smaller bending angles and 
greater flattening ratios.  

Using a multiscale approach, a shear-lag model 
for evaluating the interfacial stress transfer in CNT 
reinforced polymer composites was studied by Gao 
and Li [10]. The carried out the continuum-based 
shear-lag analysis using the elasticity theory for 
axisymmetric problems, which results in closed-
form formulas for predicting the interfacial shear 

stress and other axial stress components in both the 
nanotube and the matrix. Shen and Zhang [11] 
studied thermal post-buckling behavior of 
functionally graded carbon nanotube-reinforced 
composite plates subjected to in-plane temperature 
variation based on a micromechanical model and 
multi-scale approach. Their results indicated that 
the thermal post-buckling behaviors of CNT 
reinforced composite plates were significantly 
influenced by the thermal load ratio, the transverse 
shear deformation, the plate aspect ratio as well as 
the nanotube volume fraction. Salehi-Khojin and 
Jalili [12] studied the buckling of boron nitride 
nanotube reinforced piezoelectric polymeric 
composites subjected to combined electro-thermo-
mechanical loadings. Their results indicated that 
the piezoelectric matrix enhanced the buckling 
resistance of composite significantly, and the 
supporting effect of elastic medium depended on 
the direction of applied voltage and thermal flow. 
Also, Salehi-Khojin and Jalili [13] proposed a 
semi-active control approach to obtain a composite 
structure with tunable mechanical properties 
ranging from stiffer structure to better damper. For 
this purpose, they proposed to apply an external 
electrical field to a piezoelectric polymeric matrix 
such as polyvinylidene fluoride (PVDF) reinforced 
with carbon nanotube. They showed that upon 
electrical loads to PVDF reinforced with 
nanotubes, the interfacial adhesion can be 
selectively controlled based on some desired 
characteristics. 

Motivated by these considerations, this work 
aims to study the electro-thermo-mechanical axial 
buckling of a piezoelectric polymeric cylindrical 
shell reinforced with DWBNNTs. The present 
paper extends the principle of minimum potential 
energy to obtain the critical buckling load of 
symmetrically cylindrical composite shells with 
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two cases of boundary conditions: simple and 
clamp supports. Applying uniform electrical and 
thermal fields to a layer of PVDF shell reinforced 
by DWBNNTs, this work attempts to verify the 
influence of thermal and electrical loads on 
buckling resistance of cylindrical shell composites. 
 
2. Governing equations 
2. 1. Properties of piezoelectric polymeric 
composites  

Effective properties of polymeric piezoelectric 
fiber reinforced composites (PPFRC) with square 
or rectangular piezoelectric fiber and unit cell 
cross-sections were obtained using RVE model 
[14]. The closed-form formula is derived using 
linear piezoelectric theory and iso-field 
assumptions under multiple loads including iso-
strain, iso-stress, iso-electric field, and iso-electric 
displacement. 

 
2. 2. Electro-Mechanical coupling 

Considering that electro-mechanical behavior of 
the material is elastic and linear, the coupling 
between the corresponding mechanical and 
electrostatic fields will be limited to the linear case 
and is assumed as such. Also, stresses  and 
strains   on the mechanical side, as well as radial 
electric displacement D  and electric field E  on 
the electrostatic side, are arbitrarily combined 
according to [15] into two forms of coupled 
constitutive equations as follows: 

, .
E E

T T
C e S d

D E D Ee e d 

             
           

          

C S 

 

 
(1) 

Therefore, constants of the matrices e and d 
correspond to induced stress and strain, 
respectively [15]. 

 
 

2. 3. Cylindrical shell theory 
To model the assembly of layers or laminae of 

materials with piezoelectric properties, it has been 
suggested by [15] to extend the classical 
lamination theory for conventional laminates [16, 
17]. In cylindrical shell theory, according to 
Kirchhoff–Love hypothesis, normal and shear 
strains transverse to the laminate are assumed to be 
negligibly small. Such deformations are expressed 
by the remaining strains as [15]: 
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(2) 

 

where xs is the curvature vector, and 0
x  is the 

middle-surface linear strain. As can be seen, strains 
and electric field intensity vary linearly through the 

laminate thickness with a constant portion 0  
associated with the middle surface of the laminate 
and a linear portion n k . The stresses and radial 

electric displacement of the layer are hence 
determined as follows: 

1 1

,

x x

s s

xs xs
C

D E

 
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   
   
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(3)
 

where, x  and s  are normal stresses in x and s 

directions, respectively. xs  is the shear stress in xs 

plane. 1D  is the electrical displacement in direction 

1(along cylinder axis), as indicated in Figure 1.  
Defining N and M as in-plane and out-of plane 
resultants, respectively, and using the appropriate 
subscript, for the overall structure, we have: 
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Fig. 1. A schematic of RVE and DWBNNTs reinforced 
composite. 
 
2. 4. Strain displacement relations 

In order to calculate the middle-surface strain 
and curvatures, using Kirchhoff-Love assumtions, 
the displacement components of an arbitrary point 
anywhere are written as [18]: 

0

0
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
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 

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(5)
 

However, middle-surface strains and curvatures 
could be defined by applying Koiter–Sanders 
strain–displacement relationships [15] or Donnell’s 
formulation [19] as follows: 
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(6c)
 

where xk  and sk  are curvatures in the axial and 

circumferential direction, respectively. It should be 
noted that in the cylindrical coordination RS   
denotes the arc length S , the radius R  and 
azimuth of  . 

 

3. Buckling analysis 
3. 1. Total potential energy 

Total potential energy for an elastic body is 
expressed as [20]: 

,
r

i i i i
V

s

V U T u dS F u dV     (7)
 

where, the 1st  term on right hand side is 
electrostatic energy. The 2nd and 3rd terms represent 
the work done by the surface tractions and the 
body forces, respectively. The electroelastic energy 
density determined generally as [15]: 

0 0 0 ,md epu u u   

where 
mdu0 is the strain energy density and epu0  

is the electrical potential energy density [18]. 
Integrating over the entire structure gives the 
electroelastic energy, i.e.: 

    dVDEdVU TT
2
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Substituting Equation (4) into Equation (9), we 
have 

  dV
D
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Assuming uniform electrical fields, Equation 
(10) becomes 
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where ijC , ije , and ij  are the off-axis elastic 

coefficients of composites in coordinate system of 
shell, piezoelectric constants and dielectric 
constants, respectively, i.e.: 
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where ijC are the on-axis elastic coefficients of  

composites.   denotes the angle between local and 
global coordinate systems. Substituting Equation 
(4) into Equation (1) yields: 
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Axial and circumferential middle-plane 
displacements in x and s directions are 
negligible. Also, stress and strain in thickness 
direction are ignored. Therefore, Equations (13) 
are simplified as follows: 
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Applying matrix multiplication on Equation (11) 
gives: 
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Substituting Equations (14) into Equation (15) 
gives the electrostatic energy as: 
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Work done by traction forces are expressed as 
[21]: 
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where xN  is applied axial force on two edges of 

cylinder which is defined as: 
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where mech
xN   , T

xN  and E
xN  are mechanical, 

thermal and electrical  forces, respectively. Using 
Equation (7), the total potential energy of the 
composite shell is obtained as:  
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(19) 
where, R  and L  are radius and length of the shell, 
respectively. 

3. 2. Boundary conditions 
In this article, two boundary conditions for 

cylindrical composite shell are considered; Case 1 
referring to a shell simply supported on two edges 
and Case 2 referring to a shell with edges being 
clamped on both sides. These boundary conditions 
are described mathematically as follows: 
Case 1) Simply supported 
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For satisfying these conditions, the following 
function is assumed for the lateral displacement 
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where p and q are axial half and circumferential 
wave-numbers, respectively. 
Case2) Clamped support  
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Similarly, the following function is assumed to 
describe the lateral displacement 
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Fig. 2. Hollow circular cylindrical composite shell with 

axial load and applied voltage  V . 
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3. 3. Minimum total potential energy method  
According to the definition of minimum 

potential energy, of all the displacements satisfying 
compatibility and the prescribed boundary 
conditions, those that satisfy the equilibrium 
equations make the potential energy a minimum 
[20]. Mathematically, this happens when .0V  

Substituting the lateral displacement in total 
potential energy and applying minimum potential 
energy principle, the axial buckling force of 
composite shells may be expressed as below for 
the two cases of boundary conditions stated above:  
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 
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2 2

11 12 2

3 3 2 2
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2 2 4 3
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4 ( )
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



 

        
        

   
    

    
 
  
     
 
 

 

(24)
 

Case 2: 

 
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    

    
 

 
    

 

(25)
 

4. Numerical result and discussion 
In this section, numerical results on the effects 

of thermal and electrical loads on axially 
compressed buckling of the piezoelectric 
cylindrical shell are investigated. Using modeling 
procedure described above and Equations (24- 25), 
the numerical results of the critical buckling load 
are demonstrated in Figures 2 to 6. The nanotube 

considered as fiber in this study is DWBNNT, with 
the zigzag structure, has Young’s modulus E = 1.8 
TPa, the axial and circumferential thermal 

expansion coefficients ( 62.1  ex and 

0.6 6e   ) and  piezoelectric constant 
2

11 /95.0 mCe   . The properties of PVDF 

considered as matrix are: GPaC 24.23811  ,  

GPaC 6.2322  , GPaC 43.666  ,  

GPaC 98.312  ,  2
11 /13.0 mCe  ,  and  

C
e



151.7  . The dimensional properties of the 

shell considered are: R =246.2 nm and the 
thickness of the shell equals to thickness of single 
layer of nanocomposite which depends on BNNTs 
volume fraction. Temperature change and applied 

voltage are 100 C  and 25 V, respectively [12, 13]. 
Buckling occurs for the minimum load, i.e. the 

critical axial buckling load (Nx-crit). Figures 2 show 
axial buckling load (Nx) as a function of axial half 
wave-number (p) under mechanical load for the 
two cases of boundary conditions. As can be seen 
Nx depends on the fiber volume fraction (ρ) but its 
influence decreases for higher incremental increase 
in ρ. However, it is worth noting that the effect of ρ 
on Nx is different prior and post the minimum load. 
Before Nx-crit, maximum Nx corresponds to 
maximum ρ, while after Nx-crit this behavior is 
reversed. As far as the simple and clamped 
boundary conditions are concerned, generally in 
the former, Nx-crit is smaller in magnitude, 
indicating the importance of the boundary 
conditions on the two edges under critical axial 
buckling load of the cylindrical shell. 

Figures 3 show Nx as a function of 
circumferential wave-number (q). Buckling takes 
place in the first circumferential half wave number 
where the minimum occurs around 20000 to 25000 
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N/m range for all ρ considered here. After the 
minimum, Nx tends to increase with q with the 
slope being increased continuously for higher q.  
Dependency of Nx-crit on ρ can also be reconfirmed 
here as in Figures 2.  

 
(a)   

 
(b) 

Fig. 3. Axial buckling load, versus axial half wave-
number p for (a) simple support, and (b) clamped 
support. 

 
Figures 4 illustrate axial buckling load, Nx, as a 

function of axial half wave number, p, under 
mechanical loading. Nx-crit increases with increase 
in q. Also, Nx increases with increasing q for a 
constant p. 

The axial buckling load as a function of aspect 
ratio (L/R) is shown in Figures 5. The critical axial 
buckling load is almost independent of the axial 
half wave numbers considered here and is about 
60,000 N/m and 85,000 N/m for simple and 
clamped support boundary conditions, 
respectively. 

 
(a) 

 
(b) 

Fig. 4. Axial buckling load, versus circumferential wave-
number q for (a) simple support, and (b) clamped 
support. 
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(a) 

 
(b) 

Fig. 5. Axial buckling load, versus circumferential wave-
number p for (a) simple support, and (b) clamped 
support. 

 
Figures 6 show the combined and isolated 

effects of thermal, electrical as well as mechanical 
fields. Applying reverse voltage, increases Nx-crit 
irrespective of the wave numbers employed, 
perhaps due to polarization created in the 
piezoelectric in the longitudinal direction leading 
to its contraction [12]. 

 
(a) 

 
(b) 

Fig. 6. Axial buckling load, versus shell aspect ratio (a) 

simple support, and (b) clamped support for 1q  . 
 
This makes piezoelectric structure stronger and 

more compact in loading direction. Similar results 
are achieved when shell temperature is reduced. 
This results conforms the findings of Salehi-Khojin 
and Jalili [12] who believes that the electrical load 
is more efficient and more effective than the 
thermal one possibly due to the faster response of 
piezoelectric shell to the former. It should be noted 
that as far as potential applications are concerned, 
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applying electrical field to piezoelectric is easier 
and more beneficial. 

 

 
(a) 

 
(b) 

Fig. 7. Axial buckling load, versus axial half wave 
number for (a) simple support, and (b) clamped support. 
 
5. Conclusions 

In this study, minimum total potential energy 
approach is used to evaluate the axial buckling 
load behavior in a piezoelectric polymeric 
cylindrical shell reinforced with DWBNNT 
subjected to combined electro-thermo-mechanical 
loadings. Classical boundary conditions of simple 
and clamped supports are considered for this. 
Coupling between electrical and mechanical fields 
are considered according to a RVE-based 

micromechanical model. The results indicate that 
the influence of volume fiber fraction decreases for 
higher incremental increase in ρ. As far as the 
simple and clamped boundary conditions are 
concerned, generally in the former, Nx-crit is smaller 
in magnitude, indicating the importance of the 
boundary conditions on the two edges under 
critical axial buckling load of the cylindrical shell. 
The axial buckling load is almost independent of 
the axial half wave numbers when it plotted versus 
the aspect ratio. The critical axial buckling load 
occurs for 1q  . It is shown that buckling 

resistance of composite cylindrical shell varies by 
applying thermal and electrical loads. Applying the 
reverse voltage or decreasing the temperature, 
increases the critical axial buckling load. Results 
obtained in this study indicate that piezoelectric 
BNNT enhances the buckling resistance of the 
composite cylindrical shell. 
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